Search Results
Abstract
During the 1978 growing season, data on the number, timing and dosages of pesticide applications were collected in Wayne County, New York from 23 growers not participating in the New York Tree Fruit Program (NYTFP). Thirty-three blocks of apples were matched with 33 similar blocks from growers participating in the NYTFP. Average annual pesticide costs for participants were $48 and $71 per hectare lower than for nonparticipants, for fresh and processing fruit, respectively. No change in quality or yield of fruit was observed.
Hibiscus rosa-sinensis L. plants treated three times with 850 mg·liter-1 of the growth retardant chlormequat chloride (CCC) were less susceptible to infestation with Tetranychus urticae (Koch) than water-treated control plants. The difference in mite numbers was noted within 8 days after releasing mites onto test plants. Mean number of mites per treated plant was 3.7, compared to 30 on nontreated plants. This activity was observed on all treated plants 6 months after applying CCC. Significant differences were observed on treated plants that were defoliated and allowed to produce new foliage before being evaluated. Therefore, surface chemical residues were not responsible for reducing mite infestations on CCC-treated plants.
The silverleaf whitefly (Bemisia argentifolii Bellows & Perring) is an important pest of tomatoes in Florida and elsewhere. Associated with populations of the whitefly is an irregular ripening disorder of fruit characterized by inhibited or incomplete ripening of longitudinal sections of fruit and by an increase in the amount of interior white tissue. Experiments were conducted during the spring and fall tomato production seasons of 1995 and 1996 to elucidate the relationship of nymphal and pupal density with severity of the disorder. Insecticides or insecticide combinations were applied at predetermined densities of whitefly nymphs and pupae and the subsequent severity of the disorder was rated separately for external and internal symptoms on red ripe fruit harvested weekly. Expression of irregular ripening symptoms, especially external symptoms, were correlated positively to the density of whitefly nymphs and pupae (number·10-1 terminal leaflets on the seventh to eighth leaf from the top of a main or lateral stem) increased. Expression of external symptoms tended to be better correlated with whitefly density when symptom severity was rated 1 and 3 weeks after estimating whitefly density for the spring and fall seasons, respectively. Expression of internal symptoms tended to be more consistently correlated with whitefly density when symptom severity was rated 2 and 3 weeks after estimating whitefly density for the spring and fall seasons, respectively.
Graduate students received training in total crop management (TCM) techniques including pest scouting and trapping, nutritional monitoring, and graphical tracking of crop height. In 1995, one student visited five greenhouse businesses biweekly during the poinsettia (Euphorbia pulcherrima Willd.) season to provide TCM training to one greenhouse employee per business. In 1996, a second student visited one greenhouse business every week during the poinsettia crop to conduct the TCM program for that business. The students benefited from the gained practical knowledge of greenhouse production techniques and TCM techniques, and they also benefited from the opportunity to visit commercial greenhouses and interact with staff throughout the production cycle for an entire crop. This program also provided the students with the opportunity to develop their teaching, communication and training skills. The participating growers benefited during this study from receiving useful production information and TCM training. An evaluation of the program conducted in 1998 indicated that four of the five participating businesses continue to use some TCM techniques, while two of the five have fully integrated the TCM program into their normal production routines.
The document Cornell Integrated Crop and Pest Management Guidelines for Commercial Vegetable Production was revised in 1999 to become inclusive and integrative of all aspects of crop and pest management. As an adjunct to the printed publication, additional information was presented in tables at an Internet web site. Links on the web site were made to other sites with more detailed information on specific topics, such as photographs of pests and diagnostic information, soil fertility testing, cover crops, environmental impact of pesticides, pesticide labels, and images, sources, and life cycles of beneficial insects. The revision and web site have proven to be popular with cooperative extension staff and the vegetable industry in New York.
A major challenge facing horticultural crop production is the need to provide field and postharvest disease control measures that help maintain high quality plant products. Producers and consumers also expect high quality produce with minimal or no pesticide residues and competitive prices. The chemical management of disease is further complicated by the development of fungicide resistance in many important pathogens. Because of these concerns, an alternative or complementary approach is the use of disease resistance inducers that activate the natural defenses of the plant. Induced disease resistance in plants has been studied in many different pathosystems for nearly a century. Resistance to plant disease can be induced systemically by prior infection with pathogens, by certain non-pathogenic microbes that colonize the surface of roots and leaves, or by chemicals. The application of resistance inducers should protect plants through the induction of defenses that are effective against a broad spectrum of pathogens. Over the last few years, a number of materials that could potentially be used as inducers of resistance in horticultural crops have been identified. Some of these materials are already commercially available. Although induced resistance is known to provide a broad spectrum of disease suppression, it may not be a complete solution because variation in the efficacy of disease resistance induction has been observed. The variation in the response may be dependent on the plant species and even cultivars, as well as variability in the spectrum of pathogens that resistance can be induced against. Induction of resistance depends on the activation of biochemical processes that are triggered in the plant, and therefore a lag time between treatment and expression of resistance occurs. This lag effect may limit the practical application of disease resistance inducers. Since the efficacy of the inducers also depends on the part of the plant that was treated, the product delivery (i.e., how the inducers would be applied in order to optimize their action) is another factor to be considered. Some studies have shown that there may be side effects on growth or yield characteristics when certain inducers are used. Understanding the biochemical interactions occurring between plants, pathogens and the inducers will provide information that may be useful for the optimization of this new approach on disease control. Approaches to integrate induced resistance with other management practices need to be investigated as a means to aid the development of sustainable disease management programs that are effective as well as economically and environmentally sound.
Corn oil and Bacillus thuringiensis ssp. kurstaki (Bt) applied directly into the silk channel of a corn ear has been shown to be an effective pesticide against corn earworm, Helicoverpa zea (CEW), and european corn borer, Ostrinia nubilalis (ECB). Field studies were conducted in 2000 and 2001 to determine the influence of application timing on ear quality at harvest. Two blocks of corn were planted during each year to observe treatment effects under varying populations of the two insect species. The treatment consisted of 0.5 mL (0.017 floz) of food grade corn oil containing a suspension of Bt at 0.08 g (0.003 oz) a.i. per ear applied directly into the silk channel at the husk opening. One treatment application was made on each silk day 3 through 11 from first silk; silk day 1 was the first day that 50% or more of ears had 2.5 cm (1 inch) of silk protruding from the husk. One treatment did not receive the oil + Bt suspension. All ears were harvested at milk stage, on silk day 25. The number of CEW larvae in treated ears increased with later application days in 2000, but not in 2001. Damage from larval feeding was mainly found near the tip of the ear, and damage ratings were lower compared to untreated ears for all treatment days for both plantings in 2000, and through application day 8 in the late planting of 2001. ECB larvae were reduced for all treatment days in both plantings in 2000 and the late planting of 2001. The percentage of ears rated as marketable (i.e., free of feeding damage) ranged from 71% to 100% in treated plots compared to 30% to 77% in the untreated plots. There was a linear decrease in marketability with later application days in two of the four plantings. The greatest decrease in marketability was after application day 7. Because the oil application affects kernel development at the tip, the length of ear with under-developed kernels, or cone tip, was measured. The number of ears with cone tip decreased linearly with the later application days in all plantings. There was 10% conetip or less after day 7 in 2000 and day 6 in 2001. The best combination of effective insect control resulting in the highest rates of marketable ears with the least degree of cone tip was achieved in this experiment by application of oil + Bt suspension on day 7. Year to year variation in the environment would suggest a range from day 6 to 8.
Inoculum of Douglas fir root diseases caused by the fungi Fusarium and Cylindrocarpon is carried from crop to crop in reused containers. Soaking containers for 90 seconds in 80 °C water removed ≈99% of Fusarium and 100% of Cylindrocarpon inoculum between growing cycles. Overall seedling growth was also improved: seedlings grown in containers soaked between growing cycles were 10% taller and had 20% more biomass than seedlings grown in nonsoaked containers. We obtained a 13% increase in the number of deliverable seedlings from containers soaked in hot water between crops, from the use of copper coated containers, or from both practices combined.
Abstract
The greenhouse whitefly [Trialeurodes vaporariorum (Westwood)] is a major pest of many greenhouse crops, including poinsettias (Euphorbia pulcherrima Wild.). Chemical control of the greenhouse whitefly is difficult; therefore, alternative controls are needed.
The impact of two insecticide spray application schedules (weekly or on demand), three N and K rates [1x, 1.5x, and 2x; 1x = (kg·ha-1) 130N-149K], and two transplant container cell sizes [small, 21 mm wide × 51 mm deep (7.5 cm 3), and large, 38 mm wide × 70 mm deep (33.7 cm”)] on `Market Prize' cabbage (Brassica oleracea L. Capitata group) yield was investigated in Fall and Winter 1982-83 and Spring 1983. Fenvalerate was sprayed at 0.112 kg·ha-1. For the weekly schedule, 10 sprays were applied in fall and winter and nine in spring; for the on-demand schedule, two sprays were applied in both seasons. There were more insect-damaged heads in both seasons in the plots sprayed on demand than in those sprayed weekly. In fall and winter, the combination of a weekly schedule with 1.5x and 2x N and K rates increased marketable yields over those of the on-demand schedule. Marketable yields at the 1.5x and 2x N and K rates were similar for plants in small or large transplant container cells, but the lx N and K rate applied to plants in small cells reduced yields. In spring, both application schedules produced similar yields, but yield increased with increasing N and K rates and large transplant container cells. Insecticide application schedule and cell size did not affect leaf nutrient concentration significantly, but increasing N and K rates resulted in higher N, P, and K leaf concentrations. Concentrations of N and K in the soil at 42 days after transplanting (DAT) were higher with increasing N and K rates. At harvest (86 DAT), only K concentrations had increased with N and K rates. Chemical name used: cyano (3-phenoxyphenyl) methyl 1-4 chloro-alpha-(1-methylethyl benzeneacetate) (fenvalerate).