Search Results

You are looking at 91 - 100 of 408 items for :

  • "indole-3-butyric acid" x
Clear All

Leaf segments of greenhouse-grown Ulmus americana L. plants cultured on a Murashige and Skoog basal salts medium supplemented with 0.22 mg/L thidiazuron formed friable type of callus and regenerated shoots. This friable callus readily formed a cell suspension when the callus was placed in a liquid MS medium containing 2 mg/L 1-naphthaleneacetic acid and 1 mg/L 6-benzylaminopurine. Shoots were regenerated from 3-month-old suspension cell cultures after the suspension cells had been cultured on solid medium. Shoots developed roots on MS medium containing 0.1 mg/L indole-3-butyric acid. Intact plants were successfully established in soil.

Free access

Ectomycorrhizal and nonmycorrhizal, glasshouse-grown northern red oak seedlings (Quercus rubra L.) received root treatments of IBA in starch, fired-montmorillonite clay, or starch-encapsulated montmorillonite clay. Clay proved to be superior to starch as a carrier for IBA, inducing significant increases in diameter, root length, leaf area, and shoot dry weight. Positive growth interactions between mycorrhizae and IBA were found with the clay carrier. The typical bare-rooted red oak seedling (grown for 1 year in nurseries and outplanted) performs poorly because of insufficient root size. Container-grown seedlings produced using clay/IBA treatments may perform better under field conditions than stock grown conventionally. Chemical name used: indole-3-butyric acid (IBA).

Free access
Author:

Abstract

Fall- and spring-planted spur ‘Delicious’ trees were monitored for first-year spur and shoot development and major carbohydrate levels in 1986 and 1987. Fall planting resulted in significantly greater shoot extension growth and lower tendency to become spurbound than spring planting during both years for two strains of spur ‘Delicious’. Higher starch reserves were found following the growing season after fall planting than after spring planting. A root dip of 10,000 mg a.i. IBA/liter before spring planting in 1987 did not affect any of the characteristics measured. Chemical name used: lH-indole-3-butyric acid (IBA).

Open Access
Author:

Abstract

The lack of satisfactory methods for clonal propagation of pecan [Carya illinoensis (Wangenh.) C. Koch] rootstocks resulted in the examination of mound stooling as a propagation technique. Semi-hardwood shoots from severed stumps received several treatments involving phloem girdling and IBA. Rooting occurred only in girdled or girdled plus IBA (3000 and 6000 ppm) treatments. Girdling triggered, whereas IBA enhanced, rooting. Roots per clone was related to shoot diameter but not height. Clones were able to survive harsh field conditions, thus providing a method for cloning rootstocks and facilitating rootstock research. Chemical name used: 1H-indole-3-butyric acid (IBA).

Open Access
Authors: and

Abstract

Kiwifruit [Actinidia deliciosa (A Chev.) C.F. Liang et A.R. Ferguson, var. deliciosa] were propagated successfully by hardwood cuttings with bottom heat. Rooting improved in response to increasing bottom heat up to 24°C. Temperatures >24° damaged cuttings. Optimal results were obtained with bottom heat placed in a cold tunnel. In the heated greenhouse, rooting was unsatisfactory. NAA was the most effective auxin in promoting rooting, whereas IBA did not show appreciable effects. Chemical names used: 1-naphthaleneacetic acid (NAA); 1H-indole-3-butyric acid (IBA).

Open Access

Proliferation of Pyrus communis L. cv. Abate Fetel, Precoce Morettini, and Guyot was accomplished with a yield of 10 to 15 new shoots per explant. The in vitro procedure is based on the use of 6.7 μm BAP as an overlay on a modified MS medium. Rooting without callus formation was achieved by immersing the basal end in 5 μm IBA solution for 1 min. The possible inhibition of proliferation and plantlet regeneration by GA3 and IBA is discussed. Chemical names used: 6-benzylaminopurine (BAP); indole-3-butyric acid (IBA); gibberellic acid (GA3).

Free access
Authors: and

Plantlets were recovered from axillary bud cultures of muscadine grape (Vitis rotundifolia, `Summit'). Nodal segments 0.5 to 1.0 cm long were cultured in Murashige and Skoog (MS) basal medium supplemented with 5, 10, 20, or 40 μm BA. Best total shoot production was obtained with 10 μm BA; with higher BA levels, shoots were unexpanded and exhibited high mortalities. MS medium supplemented with IBA enhanced rooting by increasing rooting percentage and number per plantlet. Shoots previously proliferated on medium with 5 μm BA rooted significantly better than those multiplied on 10 μM BA. Shoot vigor during rooting was greater in shoots proliferated on 5 vs. 10 μm BA. Root development was not significantly affected by liquid vs. agar-solidifted medium or shoot length. Chemical names used: N-(phenylmethyl) -1H-purin-6-amine (BA), 1H-indole-3-butyric acid (IBA).

Free access

Hardwood stem cuttings of eastern redcedar (Juniperus virginiana L.), taken from containerized stock plants fertilized weekly with 0, 5, 10, 20, 40, 80, 160, 320, or 640 ppm N, were treated with 7500 ppm IBA and placed under intermittent mist for 12 weeks. Foliar starch and sucrose concentrations within cuttings at time of excision were significantly correlated with percent rooting and root length, respectively. Of the mineral nutrients analyzed (N, P, K, Ca, Mg, Mn, and B), only B and K were significantly correlated with rooting response. A threshold N level (20 ppm), applied weekly, maximized rooting; higher concentrations decreased response. Although N fertilization of stock plants affected adventitious rooting, there were no significant correlations between foliar N levels and measures of rooting response. Chemical name used: 1 H- indole-3-butyric acid (IBA).

Free access

Axillary shoots of cacao (Theobroma cacao L.), induced in vitro with cytokinins (BA or TDZ), elongated and produced leaves only in the presence of cotyledons and/or roots. Detached axillary shoots, which do not grow in `vitro under conventional tissue culture protocols, rooted with auxin and developed normally in vivo. Detached axillary shoots from cotyledonary nodes and single-node cuttings from mature plants were induced to elongate and produce normal leaves in the presence of 20,000 ppm CO2 and a photosynthetic photon flux density (PPFD) of 150 to 200 μmol·s-1·m-2. Subculture nodal cuttings continued to elongate and produce leaves under elevated CO2 and light levels, and some formed roots. Subculture of microcuttings under CO2 enrichment could be the basis for a rapid system of micropropagation for cacao. Chemical names used: N -(phenylmethyl) -1 H -purin-6-amine (BA); 1 H -indole-3-butyric `acid (IBA); α -naphthaleneacetic acid (NAA); thidiazuron (TDZ).

Free access

Expression of the rolC gene under the constitutive CaMV 35S promoter led to several advantageous alterations in transgenic carnation (Dianthus caryophyllus L. `White Sim'). The rolC-transgenic carnation plants exhibited increased axillary budbreak and development when grown under standard commercial greenhouse conditions. Carnation with rolC generated up to 48% more stem cuttings per mother plant than nontransformed plants. Stem cuttings from rolC plants exhibited better rooting ability, with up to five times higher root dry weight than controls. The improved rooting of rolC-transgenic stem cuttings was also apparent when the cuttings were treated with IBA. During the flowering season, rolC-transgenic plants produced up to three times more flowering stems than control plants. It should be noted that the latter alterations, namely increased flowering and rooting, are of major importance to the carnation industry. Chemical name used: indole-3-butyric acid (IBA).

Free access