Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Zuoshuang Zhang x
Clear All Modify Search
Free access

Dongyan Hu, Zuoshuang Zhang, Donglin Zhang, Qixiang Zhang and Jianhua Li

Ornamental peach (Prunus persica (L.) Batsch) is a popular plant for urban landscapes and gardens. However, the genetic relationship among ornamental peach cultivars is unclear. In this report, a group of 51 ornamental peach taxa, originated from P. persica and P. davidiana (Carr.) Franch., has been studied using AFLPs. The samples were collected from China, Japan, and US. A total of 275 useful markers ranging in size from 75 to 500 base pairs were generated using six EcoRI/MseI AFLP primer pairs. Among them, 265 bands were polymorphic. Total markers for each taxon ranged from 90 to 140 with an average of 120. Two clades were apparent on the PAUP–UPGMA tree with P. davidiana forming an outgroup to P. persica, indicates that P. davidiana contributed less to the ornamental peach gene pools. Within P. persica clade, 18 out of 20 upright ornamental peach cultivars formed a clade, which indicated that cultivars with upright growth habit had close genetic relationship. Five dwarf cultivars were grouped to one clade, supported by 81% bootstrap value, indicating that they probably derived from a common gene pool. These results demonstrated that AFLP markers are powerful for determining genetic relationships in ornamental peach. The genetic relationships among ornamental cultivars established in this study could be useful in ornamental peach identification, conservation, and breeding.

Free access

Dongyan Hu*, Zuoshuang Zhang, Donglin Zhang and Qixiang Zhang

Ornamental peach (Prunus persica (L.) Batsch) is native to China. The ornamental value of peach is gaining popularity for its use in urban landscape and everyday gardens. However, the genetic relationship among ornamental peach cultivars is not clear, which limits the further studies of its molecular systematic. A sample of 51 cultivars of ornamental peach, originated from P. persica and Prunus davidiana, had been studied by using AFLPs. All samples were collected from China, Japan, and the US. A total of 275 useful markers between 75 to 500 base pairs were generated from 6 EcoRI/MseI AFLP primer combinations. Among them, 93% of bands were polymorphic markers. Total markers for each cultivar ranged form 90 to 140, and the average number of markers for each cultivar was 120. Two distinguished clad generated from PAUP-UPGMA tree. P. davidiana, as a species, was apparently an out-group to P. persica, which implied that P. davidiana was far away genetically from ornamental peach (P. persica). Within P. persica clad, 15 out of 17 upright ornamental peach cultivars in this study were grouped to one clad, which indicated cultivars that with upright growth habit had close genetic relationship. Five dwarf cultivars were grouped to one clad, with 81% bootstrap supported. The genetic relationships between these five dwarfs were much closer than any other cultivars, and showed that they probably derived from the similar gene pool. The results demonstrated that AFLP are powerful markers for revealing genetic relationships in ornamental peach. The genetic relationships among ornamental cultivars established in this study could help future ornamental peach germplasm identification, conservation, and new cultivars development.

Free access

Dongyan Hu, Donglin Zhang, Zuoshuang Zhang, Qixiang Zhang and Jianhua Li

Ornamental peach [Prunuspersica (L.) Batsch.] is a well-known ornamental plant for the garden. However, the genetic relationship among ornamental peach cultivars is not clear, which limits further studies of its molecular systematics and breeding. A group of 16 taxa of ornamental peach, originated from Prunuspersica and Prunusdavidiana (Carr.) Franch., had been studied using AFLPs and ISSRs. A total of 243 useful markers between 75 to 500 base pairs were generated from six EcoRI/MseI AFLP primer combinations (ACC/CAT, AGG/CAT, ACT/CAT, ACC/CTC, AGG/CTC, and ACT/CTC). The average readable bands were 41 per primer combination. Among them, 84% of the bands were polymorphic markers. A total of 132 useful markers between 300 to 1400 base pairs were generated from 10 ISSR primers (UBC818, UBC825, UBC834, UBC855, UBC817, UBC868, UBC845, UBC899, UBC860, and UBC836). The mean reliable bands were 14 per primer. Among them, 62% of the bands were polymorphic markers. Both methods generated very similar phenograms with consistent clades. From these results we concluded that AFLP and ISSR analysis had a great potential to identify ornamental peach cultivars and estimate their phylogeny. The application of these molecular techniques may elucidate the hierarchy of ornamental peach taxa.