Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Zhubing Yan x
Clear All Modify Search

A pot experiment was performed to investigate the effects of Trichoderma harzianum on the root morphology of Malus hupehensis Rehd. seedlings and their soil environment under replant conditions. The experiment consisted of four treatments: continuously cropped soil (CK1), methyl bromide fumigation (CK2), carrier substrate control (T1), and T. harzianum fertilizer (T2). Plant growth parameters, soil phenolic acid content, abundance of soil microorganisms, and root respiration rate were measured. Compared with CK1, plant height, basal diameter, and fresh weight were 34.58%, 27.55%, and 32.91% greater in T2; 11.35%, 12.10%, and 18.33% greater in T1; and 54.34%, 57.64%, and 45.74% greater in CK2. These metrics were significantly higher in the CK2 treatment than in the other treatments. The second highest values were recorded in the T2 treatment. Differences in root architecture were consistent with differences in biomass. Application of T. harzianum fertilizer was associated with increases of 45.45%, 120.06%, 86.44%, and 268.29% in the activities of the antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), respectively, and there was little difference between T2 and CK2. The contents of phlorizin and phloretin were 39.39% and 51.70% less in T2, respectively, and 17.85% and 18.14% less in T1, respectively, compared with CK1. Trichoderma harzianum fertilizer increased the abundance of bacteria and actinomycetes while decreasing that of fungi. The gene copy numbers of Fusarium oxysporum and Fusarium moniliforme were 64.30% and 49.35% less, respectively, in the T2 treatment. The fungus population and the gene copy number of Fusarium oxysporum and Fusarium moniliforme was the least in CK2 because of the good sterilization effect. The T. harzianum fertilizer showed satisfactory effects in promoting the root growth of M. hupehensis, increasing the root resistance, decreasing the soil phenolic acid content, and significantly reducing the gene copy number of F. oxysporum and F. moniliforme. In summary, T. harzianum fertilizer is an effective and green alternative for the prevention and control of apple replant disease (ARD).

Open Access