Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Zhi-Liang Zheng x
Clear All Modify Search
Free access

Zhi-Liang Zheng, Jyan-Chyun Jang, James D. Metzger and Zhenbiao Yang

Plant architecture is a major consideration during the commercial production of chrysanthemum (Dendranthema grandiflora Tzvelev). We have addressed this problem through a biotechnological approach: genetic engineering of chrysanthemum cv. Iridon plants that ectopically expressed a tobacco phytochrome B1 gene under the control of the CaMV 35S promoter. The transgenic plants were shorter, greener in leaves, and had larger branch angles than wild-type (WT) plants. Transgenic plants also phenocopied WT plants grown under light condition depleted of far-red wavelengths. Furthermore, the reduction of growth by the expressed PHY-B1 transgene did not directly involve gibberellins. The commercial application of this biotechnology could provide an economic alternative to the use of chemical growth regulators, and thus reduce the production cost.

Free access

Zhi-Liang Zheng, Zhenbiao Yang, Jyan-Chyan Jang and James D. Metzger

Height control is a major consideration during commercial production of chrysanthemum [Dendranthema×grandiflora Kitam. (syn. Chrysanthemum×morifolium Ramat.)]. We have addressed this problem by a biotechnological approach. Plants of `Iridon' chrysanthemum were genetically engineered to ectopically express a tobacco (Nicotiana tabacum L.) phytochrome B1 gene under the control of the CaMV 35S promoter. The transgenic plants were shorter in stature and had larger branch angles than wild type (WT) plants. Reduction in growth caused by the ectopic expression of the tobacco phytochrome B1 gene was similar to that caused using a commercial growth retardant at the recommended rate. Another morphological effect observed in the leaves of the transgenic plants was more intense green color that was related to higher levels of chlorophyll. The transgenic plants appeared very similar to WT plants grown under a filter that selectively attenuated far red wavelengths. Furthermore, when plants were treated either with gibberellin A3 (which promoted growth) or 2-chlorocholine chloride, an inhibitor of gibberellin biosynthesis (which inhibited growth) the difference in the average internode length between the transgenic plants and WT plants was the same in absolute terms. This suggests that reduction of growth by the expressed PHY-B1 transgene did not directly involve gibberellin biosynthesis. The commercial application of this biotechnology could provide an economic alternative to the use of chemical growth regulators, thereby reducing production costs.

Free access

Xing-Zheng Fu, Fei Xing, Li Cao, Chang-Pin Chun, Li-Li Ling, Cai-Lun Jiang and Liang-Zhi Peng

To compare the effects of various zinc (Zn) foliar fertilizers on correcting citrus Zn deficiency and to explore an effective correcting method, three common Zn fertilizers, Zn sulfate heptahydrate (ZnSO4.7H2O), Zn chloride (ZnCl2), and Zn nitrate hexahydrate [Zn(NO3)2.6H2O], were selected to spray the Zn-deficient citrus leaves, tested at different concentrations, with or without organosilicone surfactant. Zn content, chlorophyll levels, and photosynthesis characteristics of leaves were analyzed. Leaf Zn content was significantly increased with increase of the sprayed Zn concentration of the three Zn fertilizers. However, when the sprayed Zn concentration of ZnSO4.7H2O exceeded 200 mg·L−1, and Zn concentration of ZnCl2 or Zn(NO3)2.6H2O exceeded 100 mg·L−1, obvious necrotic spots formed on leaves. This necrosis disappeared when 0.025% organosilicone was added to the three Zn fertilizer solutions, even at a Zn concentration of 250 mg·L−1. Meanwhile, the Zn contents of leaves increased one to four times for these treatments. Furthermore, foliar application of the three Zn fertilizers significantly improved chlorophyll levels and photosynthetic capacity of Zn-deficient leaves. The data of chlorophyll and photosynthesis characteristics indicate that the correcting effect of ZnCl2 and Zn(NO3)2.6H2O is better than that of ZnSO4.7H2O, and could be further improved via supplement of organosilicone. In conclusion, ZnCl2 or Zn(NO3)2.6H2O containing 250 mg·L−1 of Zn and supplemented with 0.025% organosilicone is a safe and effective formulation of Zn foliar fertilizer for correcting citrus Zn deficiency.