Search Results
‘Fuyu’ perisimmon fruit were treated with 500 nL·L−1 1-methylcyclopropene (1-MCP) for 24 h at 20 °C and then stored at 4 °C for 45 days to investigate the effects of 1-MCP on chilling injury (CI) during storage at 4 °C. Persimmon fruit developed CI, manifested as rapid softening and external and internal browning. Injury symptoms were reduced by 1-MCP treatment. 1-MCP also delayed increases in respiration and ethylene production. Compared with control fruit, 1-MCP-treated fruit exhibited increased superoxide dismutase and catalase activities within the initial storage period and lower membrane permeability, malondialdehyde content, and peroxidase and polyphenol oxidase activities throughout the entire storage period. These results suggest that reduction of CI symptoms in persimmon fruit in response to 1-MCP treatment may be attributed to altered oxidative status.
‘Tainong 1’ mango fruit were treated with hot water for 10 minutes at 55 °C and then stored at 5 °C for 3 weeks. After removal from low-temperature storage, the effects of hot water treatment (HWT) on chilling injury (CI), ripening and cell wall metabolism during storage (20 °C, 5 days) were investigated. HWT reduced the CI development of the fruit as manifested by firmer texture, external browning, and fungal lesions. A more rapid ripening process, as indicated by changes in firmness, respiration rate, and ethylene production, occurred in heated fruit after exposure to low temperature as compared with non-heated fruit. At the same time, the cell wall components in heated fruit contained more water-soluble pectin and less 1,2-cyclohexylenedinitrilotetraactic acid (CDTA)-soluble pectin than those in non-heated fruit. HWT also maintained higher polygalacturonase [enzyme classification (EC) 3.2.1.15] and β-galactosidase (EC 3.2.1.23) activities as well as lower pectin methylesterase (EC 3.1.1.11) activity. In general, the changes of ripening and cell wall metabolism parameters in the heated fruit after low-temperature storage exhibited a comparable pattern to that of non-cold-stored fruit.
Expansins are proteins that have been reported to contribute to fruit softening. In this study, an expansin gene, CDK-Exp3, was identified from persimmon fruit, and the mRNA accumulation of CDK-Exp3 during postharvest softening was examined using real-time polymerase chain reaction (PCR). Sequence analysis showed that CDK-Exp3 contained a putative open reading frame of 765 bp encoding a polypeptide of 254 amino acid residues, which had all the characteristics of α-expansin. As fruit softened, the expression of CDK-Exp3 increased dramatically within the initial 8-day ripening at 20 °C followed by a gradual decline at the late stages of ripening. The expression of CDK-Exp3 was inhibited by gibberellic acid, and the maximum transcript abundance was delayed by 20 days compared with that of the control fruit. The results suggest that CDK-Exp3 might be closely related to softening of persimmon fruit during postharvest ripening.