Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: Yun Kong x
Clear All Modify Search
Authors: and

To evaluate the potential of producing purslane (Portulaca oleracea L.) as a sodium (Na)-removing vegetable hydroponically at moderate NaCl salinity, two cultivars (Green and Golden) were grown in solutions with added 0, 6, 8, and 10 mm NaCl (the actual Na+ concentrations ≈2, 8, 10, and 12 mm, respectively). At harvest, 26 days after transplanting, apparent growth and biomass accumulation were not negatively affected by 6 to 10 mm added NaCl compared with 0 mm added NaCl. However, with the increase of added NaCl concentration from 0 to 6 to 10 mm, the sodium removal showed a 1- to 3-fold increase up to 0.26 to 0.41 mmol/plant, and 225.7 to 300.2 mmol·kg−1 dry weight (DW) or 0.90 to 1.32 mmol·L−1 H2O, respectively. ‘Green’ produced greater biomass and removed more sodium per plant than ‘Golden’. ‘Golden’ had more of a dwarfed and compact canopy than ‘Green’. Sodium removal rate (mmol/plant/day) was the highest during the first 7 days after transplanting, but the fresh weight increase rate (g/plant/day) increased gradually as growth progressed. Results suggest that it is possible to hydroponically produce purslane in nutrient solutions with 8 to 12 mm Na+. Despite the high sodium-removal capability, purslane cannot be used to reduce Na+ concentrations in NaCl-rich hydroponic solutions. The biomass yield and the sodium removal of individual plants were affected by different cultivars and time after transplanting.

Free access
Authors: and

Salicornia bigelovii is a halophyte that is capable of growing under high salinity. To evaluate the potential of producing S. bigelovii hydroponically as a vegetable at moderate NaCl concentrations, plants were grown in nutrient solutions with 6, 8, and 10 mm NaCl, and with 200 mm NaCl as a control. Results showed that plants had a reduced main stem length, canopy width, stem diameter, and root system length in 6 to 10 mm NaCl compared with those in 200 mm. Also, fresh weight increase, fresh and dry weights of individual plants, marketable yield, and water use efficiency of the plants grown in solutions with 6 to 10 mm NaCl were significantly lower than those grown in 200 mm. Associated with the reduced growth attributes, remarkable decreases in sodium uptake by the plants were also obtained in 6 to 10 vs. 200 mm NaCl. The results suggest that S. bigelovii is not a good candidate for hydroponic production as a vegetable at moderate NaCl salinity resulting from reduced growth attributes, which are possibly associated with decreased sodium uptake.

Free access
Authors: and

Suaeda glauca is an annual halophyte growing in saline–alkali environment in North China. To evaluate the potential of producing S. glauca as a vegetable at moderate NaCl concentrations, plants were grown in nutrient solutions with 6, 8, and 10 mm NaCl, and with 200 mm NaCl as a control. Results showed that main stem length, true leaf number, side branch number, and canopy width of plants in 6–10 mm NaCl were not significantly different from those in 200 mm. Also, no significant differences in fresh and dry weights of individual plants, marketable yield, and water use efficiency of the plants were observed between 6–10 and 200 mm NaCl treatments. Despite remarkable decreases in sodium uptake, similar water consumptions by the plants were obtained in 6–10 vs. 200 mm NaCl. The results suggest that S. glauca is a potential candidate for hydroponic production as a vegetable at moderate NaCl salinity, since growth attributes and biomass accumulation were not reduced when grown at lower salinity levels, despite with decreased sodium uptake.

Free access

Nondestructive estimation of individual shoot fresh weight (FW) from its measurable morphological traits is useful for a wide variety of purposes in pea shoot production. To predict individual shoot FW, nine regression models in total were developed, including two power models using stem diameter (SMD) or stem length (SML) as a variable, and seven linear models using part or all the following variables: SMD, SML, leaflet length (LL), leaflet width (LW), stipule length (SEL), and stipule width (SEW). Among the nine models, the 6-variable linear equation had the highest coefficient of determination, R 2 = 0.92, indicating it is most effective at explaining the variation in FW. The linear equations including only one variable, SMD or SML, were equally the least effective as nonlinear equations (i.e., power models). This finding suggests that there was a linear rather than nonlinear relationship between FW and the morphological variables. During stepwise regression, SEW and LW together were first removed from the 6-variable linear models without reducing the R 2, and then SEL, SMD, SML were further removed one-by-one, which reduced the R 2 from 0.92 to 0.90, 0.85, and 0.71, respectively. The result suggests that SMD, SML, SEL, and LL were the most important four predictor variables for multivariable linear regression models to estimate FW, an idea that was also supported by path analysis. For the four linear models with 1–4 predictor variables from stepwise regression, the prediction accuracy of FW was evaluated based on the agreement between the predicted and measured values using another independent dataset. The 4- and 3-variable linear models (i.e., FW = −1.437 + 0.276 SMD + 0.010 SML + 0.022 LL + 0.013 SEL and FW = −1.383 + 0.308 SMD + 0.011 SML + 0.030 LL, respectively) were selected for their more accurate prediction than 1- and 2-variable linear models and relatively simpler forms than a 6-variable linear model. Although the prediction accuracy can be potentially affected by air temperature, light conditions, and harvesting time, the multilinear regression model is an effective approach for estimating fresh weight of individual pea shoots using its measurable morphological traits.

Open Access

To determine whether supplemental blue light (B) or far-red light (FR) overnight can promote microgreen elongation to facilitate machine harvesting and improve microgreen quality and yield, two common microgreen species, mustard (Brassica juncea) and arugula (Eruca sativa), were grown in a greenhouse in Guelph, Ontario, Canada, during January 2019. Low-intensity (14 μmol·m−2·s−1) B or FR was applied to microgreens overnight from 1730 hr to 0630 hr, and no supplemental lighting (D) was used as a control. After 2 weeks of light treatments, B compared to D promoted stem elongation by 16% and 10%, respectively, and increased crop yield by 32% and 29%, respectively, in mustard and arugula. B compared to D also increased the cotyledon area in mustard and leaf mass per area in arugula and enhanced cotyledon color in both species despite having no effects on total chlorophyll, carotenoid, and phenolic contents. However, FR did not increase stem length or fresh weight compared with D, reduced plant height compared with B in both species, and reduced the cotyledon area in arugula. FR, compared with D and B, reduced the stem diameter and phytochemical contents of both species. Therefore, low-intensity B can be applied overnight for winter greenhouse microgreen production because of its beneficial effects on appearance quality and crop yield without negatively affecting nutritional quality.

Open Access

To investigate plant growth and quality responses to different light spectral combinations, cabbage (Brassica oleracea L. var. capitata f. rubra), kale (Brassica napus L. ‘Red Russian’), arugula (Eruca sativa L.), and mustard (Brassica juncea L. ‘Ruby steak’) microgreens were grown in a controlled environment using sole-source light with six different spectra: 1) FL: cool white fluorescent light; 2) BR: 15% blue and 85% red light-emitting diode (LED); 3) BRFRL: 15% blue, 85% red, and 15.5 µmol·m−2·s−1 far-red (FR) LED; 4) BRFRH: 15% blue, 85% red, and 155 µmol·m−2·s−1 FR LED; 5) BGLR: 9% blue, 6% green, and 85% red LED; and 6) BGHR: 5% blue, 10% green, and 85% red LED. For all the light treatments, the total photosynthetic photon flux density (PPFD) was set at ≈330 µmol·m−2·s−1 under a 17-hour photoperiod, and the air temperature was ≈21 °C with 73% relative humidity (RH). At harvest, BR vs. FL increased plant height for all the tested species except arugula, and enlarged cotyledon area for kale and arugula. Adding high-intensity FR light to blue and red light (i.e., BRFRH) further increased plant height for all species, and cotyledon area for mustard, but it did not affect the fresh or dry biomass for any species. Also, BRFRH vs. BR increased cotyledon greenness for green-leafed species (i.e., arugula, cabbage, and kale), and reduced cotyledon redness for red-leafed mustard. However, BGLR, BGHR, and BRFRL, compared with BR, did not affect plant height, cotyledon area, or fresh or dry biomass. These results suggest that the combination of 15% blue and 85% red LED light can potentially replace FL as the sole light source for indoor production of the tested microgreen species. Combining high-intensity FR light, rather than low-level (≤10%) green light, with blue and red light could be taken into consideration for the optimization of LED light spectral quality in microgreen production under environmental conditions similar to this experiment.

Open Access

To facilitate machine harvest for labor savings, the height of microgreens needs to reach ≈5 cm. Recent studies indicate that monochromatic blue light (B) can promote stem elongation similar to far-red light (FR). To examine whether nighttime B treatments can promote plant elongation without compromising yield and quality, mustard (Brassica juncea) and arugula (Eruca sativa) microgreens were grown under different light-emitting diode (LED) lighting regimes in a growth chamber. The 16-hour daytime lighting comprised 20% B and 80% red light (R), and had a total photosynthetic photon flux density (PPFD) of 300 µmol·m–2·s–1 at canopy level. During the 8-hour nighttime, the plants were exposed to the following treatments: 1) dark (D) as one control; 2) 4 hours of B at 40 µmol·m–2·s–1 followed by 4 hours of darkness (40B-D); 3) 4 hours of darkness followed by 4 hours of B at 40 µmol·m–2·s–1 (D-40B); 4) 8 hours of B at 20 µmol·m–2·s–1 (20B); 5) 8 hours of B + FR, and each of them at 20 µmol·m–2·s–1 (20B20FR); and 6) 8 hours of FR at 20 µmol·m–2·s–1 (20FR) as another control. The plants were harvested after 11 days of treatment. Nighttime B treatments (40B-D, D-40B, and 20B), compared with D, increased plant height by 34% and 18% for mustard and arugula, respectively, with no difference among the three B treatments. The combination of B and FR (20B20FR), compared with B alone, further increased plant height by 6% and 15% for mustard and arugula, respectively, and showed a similar promotion effect as 20FR. Plant height did not meet the machine harvest requirement for both species with the D treatment, but did so for mustard with the nighttime B treatments and for arugula with the 20B20FR treatment. There was no difference in biomass among all treatments except that 20B, compared with D, increased the fresh weight (FW) of arugula by 12%, showing a similar promotion effect as 20FR. Despite a greater promotion effect on elongation than B alone, 20FR reduced the leaf index compared with D. However, B alone or the 20B20FR treatment increased leaf thickness compared with D, and increased chlorophyll content index (CCI), leaf index, dry matter content, and leaf thickness to varying degree with species, compared with 20FR. Overall, nighttime B alone, or its combination with FR, promoted microgreen elongation without compromising yield and quality.

Open Access

An elongated stem has beneficial effects on microgreen production. Previous studies indicate that under 24-hour light-emitting diode (LED) lighting, monochromatic blue light, compared with red light, can promote plant elongation for some species. The objective of this study was to investigate whether shortened photoperiod can change blue vs. red light effects on elongation growth. The growth and morphology traits of arugula (Brassica eruca, ‘Rocket’), cabbage (Brassica oleracea, unknown variety name), mustard (Brassica juncea, ‘Ruby Streaks’), and kale (Brassica napus, ‘Red Russian’) seedlings were compared during the stage from seeding to cotyledon unfolding under two light quality × two photoperiod treatments: 1) R, monochromatic red light (665 nm) and 2) B, monochromatic blue light (440 nm) using continuous (24-hour light/0-hour dark) or periodic (16-hour light/8-hour dark) LED lighting. A photosynthetic photon flux density of ≈100 μmol·m−2·s−1 and an air temperature of ≈22 °C was used for the preceding treatments. After 7 to 8 days of lighting treatment, regardless of photoperiod, B promoted elongation growth compared with R, as demonstrated by a greater stem extension rate, hypocotyl length, or petiole length in the tested microgreen species, except for mustard. The promotion effects on elongation were greater under 24- vs. 16-hour lighting in many cases. Among the tested species, mustard showed the lowest sensitivity in elongation response to B vs. R, which was independent of photoperiod. This suggests that the blue-light-promoted elongation is not specifically from 24-hour lighting, despite the varying promotion degree under different photoperiods or for different species. The elongation growth promoted by blue LED light under a photoperiod of either 24 hours or 16 hours can potentially benefit indoor production of microgreens.

Free access

Short campanula (Campanula portenschlagiana ‘PGM Get MEE’®) stock plants present a difficulty in machine-harvesting of cuttings. Light adjustment may be an effective approach to mediate plant elongation. Two experiments were performed to 1) investigate whether short-term (five weeks) daily 24-h dynamic lighting (DL) with red and blue light-emitting diodes (LEDs) can promote elongation without inducing flowering, and 2) explore whether DL can be used to modify stock plant morphology to improve the cutting quality and rooting success in a controlled environment. Two lighting treatments were used: concurrent lighting (CL) with red (85%) and blue (15%) LEDs (RB) at 100 µmol·m−2·s−1 and DL with red (170 µmol·m−2·s−1), blue (30 µmol·m−2·s−1), and RB (100 µmol·m−2·s−1) LEDs sequentially at three different lighting stages, respectively, in both experiments. In Expt. 1, at final harvest of stock plants, the side branches were longer under DL compared with CL, but the five (= 2 + 2 + 1) weeks of 24-h daily lighting resulted in visible flower buds under both treatments. Based on the results of Expt. 1, a second experiment (Expt. 2) was conducted with the same cultivar and experimental conditions, but with a shorter photoperiod (10 h·d−1) for 11 (= 8 + 2 + 1) weeks. In Expt. 2, at final harvest, DL compared with CL caused more upright side branches, and reduced the dry biomass of side branches with one branching order and leaf chlorophyll content. However, the harvested cutting quality and rooting success were similar between both treatments. In both experiments, side branch number under DL was greater compared with CL at the end of the first lighting stage. Stock plants under DL were taller from the second lighting stage on to final harvest compared with CL, and the final heights of stock plants under DL met the target for machine-harvest in both experiments. Therefore, if the lighting strategy is further optimized, DL can potentially benefit controlled-environment production of campanula cuttings.

Open Access

Intercropping can increase land use efficiency in high tunnel crop production, but it may also lead to decreases in yield and quality of main crops due to the potential competition for resources. This study evaluated the agronomic viability of intercropping snow pea (Pisum sativum L., ‘Ho Lan Dou’) with cherry tomato (Solanum lycopersicum L. var. cerasiforme ‘Sarina hybrid’) without additional inputs of water and fertilizers on peas in an organic high tunnel production system under Southern Ontario climate conditions in Guelph, Ontario, Canada (lat. 43.5 °N, long. 80.2 °W) during 2015 and 2016. In each 80-cm-wide bed, the tomato crops were planted alternately in double rows spaced 30 cm apart, with in-row spacing of 110 cm, which resulted in a planting density of ≈24,000 plants/ha. The snow pea seeds were sown between the tomato plants (i.e., within the same beds as tomatoes) in holes (two seeds per hole), with four rows in each bed and in-row holes spaced 10 cm and at least 25 cm away from the tomato plants, which resulted in a seeding rate of ≈650, 000 seeds/ha. The same amount of water or fertilizer was applied to the intercropping and nonintercropping plots based on the needs of the cherry tomato plants. Plant growth, fruit yield, and quality were compared between tomato plants with and without intercropping. Intercropping with snow peas did not affect total marketable fruit yield, unmarketable fruit percentage, fruit quality traits (e.g., individual fruit weight, soluble solids content, dry matter content, and postharvest water loss), or early-stage plant growth of the cherry tomato. Therefore, it is at least an agronomical possibility to intercrop snow peas with cherry tomatoes on the same beds without additional inputs of water and fertilizer on snow peas in an organic high tunnel system. The additional yield of pea shoots or pods in the intercropping treatment also increased economic gross returns in the high tunnels, although the economic net return might vary with the costs of seeds and labor involved in snow pea growing.

Open Access