Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Yuehe Huang x
Clear All Modify Search

Five-year-old `Sharpblue' southern highbush (Vaccinium corymbosum) plants were self- and cross-pollinated (`O'Neal') to study peroxidase activities and isozyme patterns during fruit development. Both soluble and bound peroxidase activities were present throughout development. Activities were very high during early fruit development, with peaks at 10 and 20 days after self- and cross-pollination, respectively. Activity was much higher for cross-pollinations. During rapid fruit development, peroxidase activities were low. During ripening, the activity of soluble peroxidases increased, then declined in both treatments. Bound peroxidase activity increased during the color transition from blue to dark blue, with the increase being much greater in self-pollinated fruits. Banding patterns of both soluble and bound isoperoxidases varied by pollination treatment as well as fruit developmental stage. Pollen sources alter peroxidase isozymes and activities in developing fruits. During fruit ripening, soluble peroxidase activity appears to be associate with the color transition from light blue to blue, while bound peroxidase activity appears to be associated with the color transition from blue to dark blue.

Free access

To study the effects of pollen sources on ovule and berry development in southern highbush blueberries (Vaccinium corymbosum hybrids), 5-year-old `Sharpblue' plants were moved into a greenhouse for self- and cross-pollination experiments. Cross-pollination with `Gulfcoast' and `O'Neal' as pollen sources increased fruit weight by 58.2% and 54.9%, respectively, compared to self-pollination. Cross-pollination did not affect the number of total and small ovules significantly but did double the number of fully developed ovules and increase the average ovule size by 14%. The increase in number and size of fully developed ovules correlated with the significant difference in berry fresh weight between self- and cross-pollination. Cross- and self-pollination showed good correlations between fruit fresh weight and number or cross-sectional area of fully developed ovules. There was a poor correlation between fruit fresh weight and the number or cross-sectional area of partially developed ovules. This study provides further evidence that berry size in southern highbush is influenced strongly by the development of fully developed ovules.

Free access

`Beauregard' sweetpotatoes (Ipomoea batatas L. Lam) were stored under a continuous flow of 0%, 1%, 1.5%, 2%, 5%, 10%, or 21% O2 (balance N2) for 14 days. Respiration rate was significantly lower at 1.5%, 2%, 5%, and 10% O2 compared with 21% O2, while respiration at 0% and 1% O2 was higher than at 1.5%, 2%, 5%, and 10% O2. Respiration rate at 0% O2 remained high for several days after exposure to air while that at 1.5%, 2%, 5%, and 10% O2 increased rapidly to equal that of 21% O2. Ethanol and acetaldehyde accumulated rapidly at 0% and 1% O2 but were lower at the other O2 levels. Ethanol increased 16- and 4-fold after 14 days of storage at 0% and 1% O2, respectively, compared to 21% O2. In addition, acetaldehyde increased 11- and 8-fold at 0% and 1% O2 respectively, compared to 21% O2. Sucrose and total sugar concentration increased under low O2 concentration while reducing sugars (fructose and glucose) and pH decreased.

Free access

`Beauregard' sweetpotato (Ipomoea batatas L. Lam) roots were maintained under different controlled atmospheres ranging from 0% to 21% O2 at 22 °C in two separate trials for 14 days to study changes in activities of pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH). Trial I showed no difference in activities of PDC and ADH between 0% and 1% O2, or among 2%, 5%, and 21% O2. Both PDC and ADH activities were significantly higher at 0% and 1% O2 compared to the 2%, 5%, and 21% O2 atmospheres. In trial II, both enzyme activities were lower at 1.5% O2 than at 0% O2, but higher than at 10% and 21% O2 atmospheres. The combined data of the two trials showed a very strong correlation between PDC and ADH activities (R 2 = 0.86). In addition, a strong correlation existed between PDC activity and acetaldehyde concentration (R 2 = 0.95). The maximal activities were at pH 6.5 for PDC and at pH 8.5 for ADH in the direction of acetaldehyde-to-ethanol. The results suggest that 1.5% O2 is the critical point for the transition from aerobic to anaerobic metabolism in CA storage of sweetpotato roots, and PDC is the key enzyme in alcoholic fermentation.

Free access