Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Yue Xi x
  • All content x
Clear All Modify Search
Free access

Chao Dong, Xue Li, Yue Xi, and Zong-Ming Cheng

Pyracantha coccinea is a thorny evergreen shrub native to southeast Europe to southeast Asia. It is a popular ornamental plant because of its showy bright red fruits and small white flowers. However, in vitro vegetative propagation of P. coccinea has not been studied. Nodal segments with one or two axillary buds (1 to 1.5 cm in length) were cut and disinfected in a solution of 0.1% (v/v) mercuric chloride (HgCl2) for 5 minutes, and proliferated on Murashige and Skoog (MS) basal medium supplemented with various concentrations 6-benzylaminopurine (6-BA). After 4 weeks, newly formed shoots were transferred to proliferation and rooting media containing various concentrations of indole-3-butyric acid (IBA). Establishment of axillary buds was significantly better with an establishing rate of 67% on basal MS medium augmented with 6.6 µm 6-BA. The best medium for proliferation of shoots was three-fourth basal MS supplemented with 1.5 µm IBA, with a proliferation rate of 3.4 axillary bud. The optimum rooting medium was one-fourth MS basal medium containing 93 µm IBA. Rooting of shoots was as much as 77%. Rooted plantlets were transferred to pots containing vermiculite:perlite:peat (6:1:2) and acclimatized to ambient greenhouse conditions with a 95% survival rate. This protocol can be used for in vitro propagation of P. coccinea.

Free access

Guangxin Liu, Yue Lan, Haoyang Xin, Fengrong Hu, Zhuhua Wu, Jisen Shi, and Mengli Xi

Lily (Lilium L.) species produce among the most important cut flowers worldwide. China has ≈55 species of Lilium. Although many plants from this genus have been used in hybridization efforts, their cytology has remained unclear. The goal of the current study was to characterize the chromosomes of Lilium rosthornii Diels. Root tips were used to characterize Giemsa C-banding, propidium iodide (PI) banding, and 45S rDNA locations. The karyotype of L. rosthornii belongs to type 3B. C-banding revealed polymorphic banding patterns with the following formula: 2n = 24 = CI = 4C + 14CI+ + 2I+ +2I+ 2. Two of the four 45S rDNA hybridization sites were located at pericentromeric positions on the two short arms of the homologues of chromosome 1, and the other two were located on the long arms of one chromosome 6 homolog and one chromosome 11 homolog. Six of the eight PI bands were detected in the centromeres of the homologues of chromosomes 1, 5, and 8, and the other two PI bands were detected on the long arms of one chromosome 6 and one chromosome 11. Lilium rosthornii showed enriched banding in both Giemsa C-banding and PI painting. Interestingly, not all 45S rDNA was located in homologous chromosomal locations. These results may provide reference data for L. rosthornii for use in further Lilium breeding.

Free access

Guangxin Liu, Xiaoling Zhang, Yue Lan, Haoyang Xin, Fengrong Hu, Zhuhua Wu, Jisen Shi, and Mengli Xi

Karyotype comparison and fluorescence in situ hybridization (FISH) were conducted to analyze the wild Lilium species distributed in China. The karyotype results revealed that all species except Lilium lancifolium (2n = 3X = 36) were diploid and had two pairs of metacentric or submetacentric chromosomes. The karyotypes of all species are similar. FISH analysis revealed that there are 5–12 45S rRNA gene loci dispersed on the chromosomes of the 14 diploid species, and 15 45S rRNA gene loci were detected in the triploid species L. lancifolium. Most of the FISH signals were detected on the long arms and the centromeric regions. Three samples of L. brownii [Hubei, China (lat. 31°28′N, long. 110°23′E); Liaoning, China (lat. 40°07′N, long. 124°19′E); and Guangxi, China (lat. 25°06′N, long. 107°27′E)] showed very similar chromosome patterns in both the karyotype and the FISH analyses, further demonstrating that these samples belonged to the same species. L. brownii is widely distributed in China from latitude 25°06′N to 40°07′N, indicating that it is highly adaptable to the environment.