Search Results
Aluminum (Al) toxicity and phosphorus (P) deficiency are two crucial factors limiting the production of Camellia oleifera, which is grown commercially in red acidic soils in Southern China. The current study characterized the different forms of P and Al in the red acidic soils of C. oleifera plantations. Soil and plant tissue samples taken from 32 Camellia plantations across Hunan province were analyzed. Furthermore, a pot experiment with nutrient solutions of different Al and P contents was carried out to investigate P and Al uptake and their effect on C. oleifera growth. The results showed that the P content extracted by NaOH (Fe-P) was the highest in all types of soil samples (rhizosphere, 0–20 cm, and 20–40 cm zones), followed by P extracted by NH4F (Al-P), H2SO4 (Ca-P), and Na3C6H5O7 (O-P). HCl (In-Al), NH4Ac (Ha-Al), and Na4P2O7·10H2O (Or-Al) extracted Al were the main forms and accounted for 22.8%, 23.1%, and 23.8% of total Al, respectively. KCl extracted Al (Ex-Al) contents in the rhizosphere, 0–20 cm, and 20–40 cm soil zones were 4.78, 4.86, and 4.59 mg·kg−1, respectively. P contents in roots, young leaves, and old leaves were 0.80, 0.82, and 0.64 mg·kg−1, respectively. The highest Al content of 11.35 g·kg−1 was found in the old leaves, followed by roots and young leaves. Correlation analyses revealed that P in roots was positively associated with available P (AP) and Al-P in rhizosphere. P in roots and young leaves also had a positive correlation with Ex-Al, whereas Al in old leaves was positively correlated with In-Al and total Al. Significant correlations between Al-P, Ex-Al, and AP were detected. The pot experiment indicated that adding Al or P alone increased plant growth and Al or P uptake, respectively. When adding both Al and P, significant synergistic effect was found. These results suggest that Al is beneficial to C. oleifera, which may be the adaptive mechanism of C. oleifera to use insoluble Al-P in red acidic soil.
Low mobility and solubility reduce the availability of traditional phosphorus (P) fertilizer in red acidic soil. Hydroxyapatite (HAP), especially nano-hydroxyapatite (n-HAP), may be more efficient than P fertilizer because of its nanoparticle characteristics. Camellia oleifera (C. oleifera) is an edible oil tree whose productivity is greatly affected by P fertilizer. During this study, we investigated the migration of different particle sizes of HAP (20 nm, 200 nm, and 80 μm) and their effects on the seedling growth of C. oleifera cultivar Huashuo (HS) cuttings. A column experiment showed that the efflux ratio was negatively correlated with particle size in red acidic soil. The leaching results revealed that the contents of total P and available P in the 20-nm treatment were significantly higher than those in the 200-nm and 80-μm treatments in the deep soil (10–15 cm or 15–20 cm), whereas the application of 20-nm n-HAP caused 13.43% wastage of available P. During the container experiments, 200-nm and 20-nm HAP significantly promoted the growth of the seedlings in terms of seedling height, stem diameter, and biomass. The available P contents in the rhizosphere and nonrhizosphere soils were negatively correlated with the HAP particle sizes. In conclusion, the migration of HAP is inversely correlated with particle size, and HAP improves the P bioavailability in red acidic soil. In summary, 200-nm HAP was the best P fertilizer for the seedlings of HS among the three particle sizes. This study offers preliminary results indicating that 200-nm HAP might be a better P fertilizer compared with other two HAP particle sizes for use in future C. oleifera orchards.
Although tolerance to high temperature is crucial to the summer survival of Iris germanica cultivars in subtropical areas, few physiological studies have been conducted on this topic previously. To remedy this, this study explored the physiological response and expression of heat shock factor in four I. germanica cultivars with varying levels of thermotolerance. The plants’ respective degrees of high-temperature tolerance were evaluated by measuring the ratio and area of withered leaves under stress. Several physiological responses to high temperatures were investigated, including effects on chlorophyll, antioxidant enzymes, proline, and soluble protein content in the leaves of four cultivars. CaCl2 was sprayed on ‘Gold Boy’ and ‘Royal Crusades’ considered being sensitive to high temperatures to study if Ca2+ could improve the tolerance, and LaCl3 was sprayed on ‘Music Box’ and ‘Galamadrid’ with better high-temperature tolerance to test if calcium ion blocker could decrease their tolerance. Heat shock factor genes were partially cloned according to the conserved region sequence, and expression changes to high-temperature stress with CaCl2 or LaCl3 treatments were thoroughly analyzed. Results showed that high temperature is the primary reason for large areas of leaf withering. The ratio and area of withered leaves on ‘Music Box’ and ‘Galamadrid’ were smaller than ‘Gold Boy’ and ‘Royal Crusades’. CaCl2 slowed the degradation of chlorophyll content and increased proline and soluble protein in ‘Gold Boy’ and ‘Royal Crusades’ but had no significant effect on activating peroxidase or superoxide to improve high-temperature tolerance. Genetic expression of heat shock factor in ‘Gold Boy’ and ‘Royal Crusades’ was upregulated by Ca2+ at later stages of leaf damage under high-temperature stress. LaCl3 down-regulated the physiological parameters and expression level of heat shock factor in ‘Music Box’ and ‘Galamadrid’. These results suggest that different I. germanica cultivars have varying high-temperature tolerance and furthermore that Ca2+ regulates their physiological indicators and expression level of heat shock factor under stress.
To reveal the genetic diversity and genetic relationships of China’s Bergenia germplasm, 28 Bergenia accessions from different regions in China were analyzed by 24 intersimple sequence repeat (ISSR) markers. The results showed that 318 sites were amplified in all germplasm, including 307 polymorphic sites, and the percentage of polymorphic sites was 96.54%. Cluster analysis showed that the 28 accessions were divided into three categories, with a similarity coefficient of 0.5475. Bergenia purpurascens was clustered into one category; B. scopulosa was clustered into one category; and B. tianquaninsis, B. emeiensis, B. stracheyi, and B. crassifolia were clustered into one category. The results of the cluster analysis indicated that the 28 accessions were not completely classified by origin. Using the ISSR marker technique to analyze the phylogenetic relationship of Bergenia germplasm is helpful for identifying valuable resources and providing a theoretical basis for the selection of breeding parents.
The primary objective of this research was to study the female fertility of the odd-tetraploid cultivar Honesty of Lilium containing one set of Longiflorum chromosomes and three sets of Asiatic chromosomes (LAAA) to open a new approach to Lilium breeding. To assess its female fertility, ‘Honesty’ was hybridized with four autotetraploid Asiatic lily cultivars. The results showed that the fruit of all ‘Honesty’ × tetraploid (4x × 4x) combinations developed well, and viable seedlings could be obtained, suggesting that ‘Honesty’, despite being male-sterile, has considerable female fertility. Genomic in situ hybridization showed that the progenies of the 4x × 4x hybridizations were aneuploid. Considering that lily is vegetatively propagated and aneuploids often demonstrate considerable phenotypic variation, odd-tetraploid lilies such as ‘Honesty’ may be useful maternal parents for breeding new lily cultivars.
The mechanism regulating procyanidin (PA) accumulation in banana (Musa acuminata) fruit is not understood. During this study, the effects of PA treatment on the activities of banana PA biosynthetic enzymes and transcriptomic profiles were investigated. The results showed that PA treatment delayed the decreases in leucoanthocyanidin reductase and anthocyanidin reductase activities, which affected the accumulation of PA. Furthermore, the peel samples of the control fruit and the PA-treated fruit on day 1 were selected for transcriptomic analysis. The results revealed that PA treatment induced 1086 differentially expressed genes. Twenty-one key genes, including those encoding biosynthetic enzymes and regulatory factors involved in PA biosynthesis, were validated using a quantitative real-time polymerase chain reaction. The results showed that these genes were upregulated by PA treatment during banana storage. Taken together, our study improves current understanding of the mechanism underlying PA-regulated banana senescence and provide new clues for investigating specific gene functions.