Search Results

You are looking at 1 - 10 of 13 items for

  • Author or Editor: Yuan Zhang x
Clear All Modify Search

Air pollution may play a role in gametophytic selection. To estimate whether such selection was occurring, pollen grains from homozygous and heterozygous tomato plants were tested under pollution stress. Homozygous pollen could be expected to respond to pollution more uniformly than heterozygous due to the identical genotype of the pollen grains. Acid rain reduced pollen germination and tube elongation in Lycopersicon hirsutum LA1777 (heterozygous) and Lycopersicon pennellii LA716 (nearly homozygous). UV-B reduced tube length of the pollen from both plants, but ozone only reduced pollen tube length of L. pennellii. The responses of these two kinds of pollen to acid rain, ozone, and UV-B appears to be same in terms of heterozygosity and stress dosages, suggesting the reduction of pollen germination and tube elongation under pollution stress may be mediated through physiological or physical alterations and not a response of different genotypes.

Free access

The morphological characteristics of chrysanthemum (Chrysanthemum ×morifolium) are rich in variation. However, as a result of the aneuploid polyploidy of the chrysanthemum genome and the lack of proper tools, the genomic information of this crop is limited. Development of microsatellite markers has been an increasing trend in crop genetic studies because of the applicability of these markers in breeding programs. In this study, we reported the development of a simple sequence repeat in chrysanthemums using a magnetic beads enrichment method. An enriched genomic library with AC and GT microsatellite motifs was constructed, and 53 positive clones were detected by a colony polymerase chain reaction (PCR) technique. Of these clones, 35 showed high-quality sequences, and 35 primer pairs were designed accordingly. Twenty-six (74.29%) of the 35 primer pairs revealed polymorphisms on a set of 40 chrysanthemum cultivars. There were 172 alleles amplified over 26 loci with an average of 6.615 alleles per locus. The mean values of gene diversity corrected for the sample size and the inbreeding coefficient were 0.609 and 0.119 over 26 loci, respectively, which indicated that the majority of the microsatellite loci is highly informative. Cluster analysis based on 26 polymorphic loci demonstrated that the selected cultivars were clustered according to geographical origin. This study shows the isolation efficiency of the magnetic beads technique; the abundance of microsatellites in chrysanthemum; and the potential application for the cultivar classification, the studies on genetic diversity, and molecular breeding of chrysanthemums, which is beneficial to promoting the conservation and sustainable use of this crop.

Free access

The relationship between lipoxygenase (LOX) pathway-derived volatiles and LOX gene expression was evaluated in kiwifruit [Actinidia deliciosa (A. Chev.) C.F. Liang et A.R. Ferguson var. deliciosa cv. Bruno] during postharvest ripening at 20 °C. The C6 aldehydes n-hexanal and (E)-2-hexenal were abundant in peel compared with flesh tissue and declined as kiwifruit ripened. Esters such as ethyl butanoate and methyl butanoate were lower in the peel than flesh and accumulated when the fruit underwent a climacteric rise in ethylene production. Total LOX activity was higher in the peel than in the flesh and increased as kiwifruit ripened. Expression of AdLox2, AdLox3, AdLox4 and AdLox6 was high in the peel, whereas AdLox1 and AdLox5 showed similar levels in the peel and flesh at the ethylene climacteric. AdLox1 and AdLox5 transcript levels increased and AdLox2, AdLox3, AdLox4 and AdLox6 levels decreased during postharvest fruit ripening. Principal component analysis showed that n-hexanal and (E)-2-hexenal were grouped with LOX genes that were downregulated as kiwifruit ripened. The possible roles of LOX genes in relation to kiwifruit volatile formation during fruit ripening are discussed.

Free access

Brassica rapa L. ssp. chinensis (L.) Hanelt, known as nonheading chinese cabbage in China, is an important vegetable in eastern Asia and its genetic improvement requires a genetic linkage map. The first genetic linkage map of nonheading chinese cabbage using 112 doubled haploid lines derived from a released F1 hybrid cultivar Shulü between two lines SW-3 and Su-124 was constructed in this paper. One hundred thirty-eight molecular markers were mapped into 14 linkage groups. Among these markers, there were 77 sequence-related amplified polymorphism markers, 27 simple sequence repeat markers, 21 random amplification polymorphic DNA markers, and 13 intersimple sequence repeat markers. Chi-square tests showed that 54 markers are distorted from Mendelian segregation ratios, and the direction of the distortion is mainly toward the maternal parent SW-3. The distortion affects not only the estimation of genetic distance, but also the order of distorted markers on a same linkage group. Given a specific marker order, the authors proposed a multipoint approach to correct the linkage map in an unbiased manner in an F2 population while considering distorted, dominant, and missing markers. A new method was used to correct the linkage map in the doubled haploid population mentioned earlier considering new, distorted, and missing markers. The total length of the corrected linkage map was 1923.75 cM, with an average marker spacing of 15.52 cM. The map will facilitate selective breeding and mapping of quantitative trait loci.

Free access

Camellia oleifera Abel. is one of four major woody oil plants in the world. The objective of the current study was to evaluate the effect of different plant growth regulators (PGRs) and concentrations on direct organogenesis using cotyledonary nodes, hypocotyls, and radicle explants. High induction frequency of adventitious shoots were obtained from cotyledonary nodes, hypocotyls, and radicle explants (85.2%, 73.6%, and 41.0%, respectively) when cultured on half-strength Murashige and Skoog (1/2 MS) medium containing 2.0 mg·L−1 6-benzylaminopurine (BA) and 0.1 mg·L−1 indole-3-acetic acid (IAA). Microshoots from cotyledonary nodes, hypocotyls, and radicle explants were then transferred to 1/2 MS medium containing 2.0 mg·L−1 BA and 0.05 mg·L−1 indole-3-butyric acid (IBA) for shoot multiplication, resulting in 6.9 shoots per explant. The shoots were transferred to Woody Plant Medium (WPM) supplemented with various α-naphthalene acetic acid (NAA) and gibberellic acid (GA3) for shoot elongation. The mean length of shoots and the number of leaves per shoot were 3.7 and 6.6 cm, respectively, in WPM supplemented with 0.5 mg·L−1 NAA and 3.0 mg·L−1 GA3. The highest rooting of shoots (90.2%) or the number of roots per shoot (7.2) was obtained when elongated microshoots were transferred to 1/2 MS medium supplemented with 3.5% perlite, 1.0 mg·L−1 IBA and 2.0 mg·L−1 NAA. The rooted plantlets were successfully acclimatized in the greenhouse with a survival rate of 90.0%. The in vitro plant regeneration procedure described in this study is beneficial for mass propagation and improvement of C. oleifera through genetic engineering.

Free access

Fruit bagging is a popular agricultural practice that has been widely used to physically protect fruit. However, the application of fruit bags usually has various effects on fruit quality. In this study, three kinds of paper bags with different colors and transmittance were applied to investigate their effects on the skin coloration and related gene expression of peach (Prunus persica). Our findings showed that bagging treatment inhibited anthocyanin accumulation and the expression of related structural and regulatory genes in the peach pericarp. To a certain extent, the inhibitory effects were negatively correlated with the light transmittance of these paper bags. The expression of MYB10.1 was also suppressed by fruit bagging and was highly consistent with anthocyanin content in peach pericarps, which indicated that MYB10.1 might have a critical role in the light-mediated regulation of anthocyanin production in peach pericarps. These findings further enrich our theoretical knowledge of the regulation of anthocyanin synthesis in peach fruit and provide a theoretical basis for common horticultural practices.

Open Access

Heterostylous Primula forbesii is an important ornamental flower in China because of its long-lasting flowers and winter bloom. This study aimed to develop markers of expressed sequence tag–simple sequence repeats (EST-SSRs) that are associated with heterostyly and that can be used for molecular-assisted selective breeding in P. forbesii. We investigated 114,474 unigenes and identified 25,095 SSRs in P. forbesii. Dinucleotide repeats (46.14%), mononucleotide repeats (44.65%), and trinucleotide repeats (8.27%) were the most abundant SSRs. Among the 25,095 SSRs, 10,645 SSR primer pairs were successfully designed, of which 130 primer pairs were randomly selected for further amplification validation using eight accessions of P. forbesii; 98 pairs produced clear and stable polymerase chain reaction (PCR) products, and 28 pairs showed polymorphism. Bulked segregant analysis (BSA) was conducted for the F1 population with respect to thrum style and pin style by scanning 28 polymorphic SSR primer combinations. One SSR marker, c64326, linked to the heterostyly trait at a genetic distance of ≈3.70 cM was identified. The marker c64326 was further validated in two populations with an accuracy of 97.92% and 90.63%. The novel and linked EST-SSR markers can be valuable resources for genetic diversity analysis, mapping, and marker-assisted breeding in P. forbesii.

Free access

After nearly a decade of development, the scale of blueberry (Vaccinium sp.) cultivation has increased, particularly in south China; however, this region is becoming increasingly challenged by temperature changes during the flowering phenophase. Understanding the effects of temperature on pollen germination and pollen tube growth in blueberry is thus important. Using the rabbiteye blueberry (V. ashei) ‘Brightwell’, different temperature treatments were carried out during open pollination and cross-pollination with the pollen from rabbiteye blueberry ‘Gardenblue’ in field, greenhouse, and controlled temperature experiments over two consecutive years. The differences in pollen germination, pollen tube dynamics, and ovule viability following different treatments were analyzed, and the critical temperatures were calculated using quadratic and modified bilinear equations to quantify the developmental responses to temperature. The results showed that the fruit set of the artificially pollinated plants inside the greenhouse was significantly higher than that outside the greenhouse. Furthermore, pollen germination and pollen tube growth gradually accelerated under the appropriate high-temperature range, resulting in reduced pollen tube travel time to the ovule. However, the percentage of the style traversed by the pollen tube did not increase at temperatures greater than 30 °C, and a high-temperature range could accelerate ovule degeneration. Therefore, impairment of pollen tube growth in the upper half of the style following pollen germination and ovule degeneration constituted important factors leading to reduced fruit setting under short periods of high temperature during the flowering phenophase in rabbiteye blueberry. This work advances our understanding of the effect of temperature on pollen germination, pollen tube growth, ovule longevity, and fruit setting in rabbiteye blueberry, and provides a foundation for continued cultivation and breeding enhancement. The findings propose that the tolerance of rabbiteye blueberry to a certain high-temperature range in the flowering phenophase should inform breeding strategies for temperature resistance and that temperature range is also an important indicator of suitable environments for cultivation to mitigate potential temperature stress.

Free access

The mechanism regulating procyanidin (PA) accumulation in banana (Musa acuminata) fruit is not understood. During this study, the effects of PA treatment on the activities of banana PA biosynthetic enzymes and transcriptomic profiles were investigated. The results showed that PA treatment delayed the decreases in leucoanthocyanidin reductase and anthocyanidin reductase activities, which affected the accumulation of PA. Furthermore, the peel samples of the control fruit and the PA-treated fruit on day 1 were selected for transcriptomic analysis. The results revealed that PA treatment induced 1086 differentially expressed genes. Twenty-one key genes, including those encoding biosynthetic enzymes and regulatory factors involved in PA biosynthesis, were validated using a quantitative real-time polymerase chain reaction. The results showed that these genes were upregulated by PA treatment during banana storage. Taken together, our study improves current understanding of the mechanism underlying PA-regulated banana senescence and provide new clues for investigating specific gene functions.

Open Access