Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Yu-Wei Liu x
Clear All Modify Search
Open access

Yu-Wei Liu and Chen-Kang Huang

Hydroponic systems in plant factories can be categorized into recirculating or noncirculating systems. In this study, the effects of various commercially available circulation pumps, including a centrifugal magnetic drive pump, a regenerative self-priming pump, and a submersible pump, were experimentally explored. In addition, the effects of an ultraviolet sterilization system on the ion concentrations in nutrient solutions were examined. The concentrations of sodium, potassium, magnesium, calcium, nitrate, sulfate, and ferric (Fe3+) ions in the nutrient solution were measured. For all three types of pumps, the results indicated that there was no significant effect on the concentrations of ions in the nutrient solution. However, the concentration of Fe3+ ions decreased significantly after the nutrient solution was treated by a ultraviolet sterilization system for 48 hours. In addition, the effects of the three types of pumps on the growth of butterhead lettuce (Lactuca sativa) were examined. The temperature records during the pump circulation tests showed that the nutrient solution temperature of the regenerative self-priming pump increased by 15.5 °C (from 20.5 to 36 °C), which caused yellow seedling, scorching on the leaves, and browning of the roots. The ion concentration in the nutrient solutions and total fresh weight of butterhead lettuce did not show any noticeable difference between the centrifugal magnetic drive pump and the submersible pump. In this paper, we clarify the cause of the decreasing iron concentration and provide a guideline for selecting the pump for circulating hydroponic systems in plant factories.

Restricted access

Jin-wei Zhang, Yi-xue Liu, Jin-ping Yu, Wei Zhang, Ya-qiong Xie and Ning-ning Ge

In the early Spring of 2015 and 2016, weed infestation surveys were conducted in areas of cool-season turfgrass Festuca arundinacea Schreb. at 23 sites within Tianjin municipality in northern China. The weed community within turfgrass areas comprised 37 weed species belonging to 14 families. Perennial weeds accounted for 45.9% of the total community of weed species, whereas annual or biennial weeds accounted for 54.1%. Asteraceae was the dominant family (43.2%), and the percentage of broadleaved weeds was 94.6%. Statistical analyses of the weed dominance index (integrating weed relative height and relative coverage) and relative abundance (integrating weed relative density, frequency, and uniformity) showed that the 10 most common weed species during the early spring were Ixeris polycephala Cass., Taraxacum mongolicum Hand.-Mazz., Inula japonica Thunb., Hemistepta lyrata Bge., Trigonotis pedunclaris (Trev.) Benth., Calystegia hederacea Wall., Lepidium apetalum Willd., Plantago asiatica L., Cirsium segetum Bge., and Ixeris sonchifolia Hance. Ixeris polycephala Cass. and T. mongolicum Hand.-Mazz were the most dominant and harmful weed species. Partial correlation analysis (PACA) indicated that the deterioration rate (percentage of bare soil or coverage of plants other than turfgrass) of the turfgrass area was significantly and positively correlated with the total dominance index [(TDI), an index to evaluate the weed infestation severity)] and that the soil organic matter (SOM) and salinity factors were negatively correlated with the TDI. Factors such as soil nutrient conditions (the contents of N, P, and K and the total N), soil physical properties (density and clay content), soil moisture, soil temperature, and soil pH did not correlate significantly with the TDI. We conclude that the deterioration rate was the most important factor influencing weed infestation in the early spring and that SOM and soil salinity might also be important factors. The results of this study can help turfgrass researchers and managers identify the most harmful weed species and integrate management strategies in areas of cool-season turfgrass F. arundinacea Schreb. during early spring in the Tianjin region, China.

Restricted access

Xin Hao, Yu Fu, Wei Zhao, Lifei Liu, Rengui Bade, Agula Hasi and Jinfeng Hao

The MADS-box gene family encodes a type of transcription factor, and plays a key role in the growth and development of plants. Here, we identified 62 MADS-box genes in the melon (Cucumis melo) genome using bioinformatics methods. These genes were divided into type I Mα, Mγ, and Mδ subfamilies (26 members) and type II MIKCC subfamilies (36 members) by phylogenetic analysis. There were no genes in type II AGL12, BS, TM8, and MIKC* subfamilies, and type I Mβ subfamilies. Conserved motif analysis showed that all motifs had a subfamily-specific distribution except the M domain. The expression analysis of the MADS-box genes showed different expression characteristics. In summary, this study is the first to identify melon MADS-box genes and analyze their gene structures, subfamily distribution, and expression characteristics. These results provide a foundation for investigating the functions of the melon MADS-box genes.

Free access

Wei Hu, Ju-Hua Liu, Xiao-Ying Yang, Jian-Bin Zhang, Cai-Hong Jia, Mei-Ying Li, Bi-Yu Xu and Zhi-Qiang Jin

The banana, a typical climacteric fruit, undergoes a postharvest ripening process followed by a burst in ethylene production that signals the beginning of the climacteric period. Postharvest ripening plays an important role in improving the quality of the fruit as well as limiting its shelf life. To investigate the role of glutamate decarboxylase (GAD) in climacteric ethylene biosynthesis and fruit ripening in postharvest banana, a GAD gene was isolated from banana, designated MuGAD. Coincidently with climacteric ethylene production, MuGAD expression as well as the expression of the genes encoding the Musa 1-aminocyclopropane-1-carboxylate synthase (MaACS1) and Musa 1-aminocyclopropane-1-carboxylate oxidase (MaACO1) greatly increased during natural ripening and in ethylene-treated banana. Moreover, ethylene biosynthesis, ripening progress, and MuGAD, MaACS1, and MaACO1 expression were enhanced by exogenous ethylene application and inhibited by 1-methylcyclopropene (1-MCP). Taken together, our results suggested that MuGAD is involved in the fruit ripening process in postharvest banana.

Free access

Choun-Sea Lin, Nien-Tzu Liu, De-Chih Liao, Jau-Song Yu, Chuang-Hwei Tsao, Chao-Hsiung Lin, Chih-Wen Sun, Wann-Neng Jane, Hsing Sheng Tsay, Jeremy Jian-Wei Chen, Erh-Min Lai, Na-Sheng Lin, Wei-Chin Chang and Chung-Chih Lin

The chloroplast genome of an albino mutant isolated from tissue culture of the bamboo Bambusa edulis Munro was examined to identify aberrations. A number of the chloroplast genes encoding ATP synthases, photosystem II subunits, NADH dehydrogenase, and ribosomal proteins had been deleted, at least partially, in the albino mutant. Comparison of the two-dimensional electrophoresis profiles of albino and green bamboos revealed three spots of reduced intensity, indicating repression of these proteins in the albino mutants. Mass spectroscopic analysis subsequently revealed that two of these proteins are 33-kDa subunits of the photosystem II oxygen-evolving protein complex (PsbO) and one is a 23-kDa subunit of photosystem II oxygen-evolving protein complex (PsbP). The genes encoding these two proteins were cloned from B. edulis, and were denoted BePsbO (accession no. EF669513) and BePsbP (accession no. EF669512). Reverse transcription polymerase chain reaction and two-dimensional gel analyses of BePsbO and BePsbP in green and albino bamboos grown in the light or dark revealed that the albino mutant, similar to its green counterpart, sensed the light signal, resulting in the induction of BePsbO and BePsbP transcription, but it did not accumulate the protein products. We conclude that the repression of protein-expressing BePsbO and BePsbP is because of a defect in post-transcriptional regulation in the albino mutant.