Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Yu Tian x
Clear All Modify Search
Free access

Xiyan Yu, Xiufeng Wang, Jide Fan, Hongmei Tian and Chengchao Zheng

Sucrose phosphate synthase [SPS (EC] is thought to play a critical role in sucrose accumulation in muskmelon (Cucumis melo L.) fruit. A full-length cDNA clone encoding sucrose phosphate synthase was isolated from muskmelon by reverse transcriptase–polymerase chain reaction and rapid amplification of cDNA ends. The clone, designated CmSPS1, contains 3377 nucleotides with an open reading frame of 3162 nucleotides. The deduced 1054 amino acids sequence showed high identities with other plant sucrose phosphate synthases. Northern blot analysis indicated that CmSPS1 was expressed in leaves, stems, and mature fruit, but was not detected in roots or flowers. Moreover, the mRNA accumulation of CmSPS1 started at 25 days after pollination (DAP) and reached highest level in mature fruit. Interestingly, both sucrose content and SPS activity increased dramatically between 20 and 30 DAP during fruit development, suggesting that sucrose accumulation may be linked to the CmSPS1 transcript level in muskmelon fruit.

Restricted access

Jinghua Guo, Yan Yan, Lingdi Dong, Yonggang Jiao, Haizheng Xiong, Linqi Shi, Yu Tian, Yubo Yang and Ainong Shi

Hydroponics has been an increasingly important field of vegetable production. However, a big issue with hydroponics is that certain crops can quickly accumulate high levels of nitrate-N (NO3 ± -N) from the hydroponic system. The objective of this research was to decrease NO3 accumulation and increase the nutritional value and yield of vegetable crops using lettuce and oilseed rape as a model under hydroponic production. In this study, two technologies were applied to leafy vegetable production: 1) using supplementary lighting (blue-violet diode) by manipulating illumination and 2) removing fertilization before harvest for a short term (3 or 5 days), thus providing a practical experiment for improving yield and edible qualities of hydroponic leaf vegetable production. Illumination was applied 4 hours a day (0500–0700 hr and 1700–1900 hr) during good weather, or 12 hours a day during bad weather with insufficient natural light (<2000 lux) during the autumn and winter seasons. Results showed that the lettuce cultivar Ou-Luo and the oilseed rape cultivar Ao-Guan Pakchoi had increased yield (50.0% and 88.3%, respectively), decreased NO3 content (26.3% and 30.8%, respectively), and increased total soluble solids (24.1% and 30.6%, respectively). The 5-day fertilizer-free treatment before harvest resulted in 19.2%, 6.4%, and 16.5% yield increases; and 26.0%, 24.3%, and 47.8% NO3 decreases in oilseed rape cultivar Ao-Guan Pakchoi and lettuce cultivars Da-Su-Sheng and Ou-Luo, respectively.

Free access

Chandra Thammina, Mingyang He, Litang Lu, Kaishuang Cao, Hao Yu, Yongqin Chen, Liangtao Tian, Junmei Chen, Richard McAvoy, Donna Ellis, Degang Zhao, Yuejin Wang, Xian Zhang and Yi Li

Euonymus alatus (Thunb.) Sieb., commonly known as “burning bush,” is an extremely popular landscape plant in the United States as a result of its brilliant showy red leaves in fall. However, E. alatus is also seriously invasive because of its prolific seed production and effective seed dispersal by birds. Thus, development of sterile, non-invasive, seedless triploid E. alatus is in high demand. In this article, we report successful production of triploid E. alatus using endosperm tissues as explants. In our study, ≈50% of immature endosperm explants and 14% of mature endosperm explants formed compact, green calli after culture in the dark for 8 weeks and then under light for 4 weeks on Murashige and Skoog (MS) medium supplemented with 2.2 μM BA and 2.7 μM α-naphthaleneacetic acid (NAA). Approximately 5.6% of the immature endosperm-derived calli and 13.4% of mature endosperm-derived calli initiated shoots within 8 weeks after they were cultured on MS medium with 4.4 μM benzyladenine (BA) and 0.5 μM indole-3-butyric acid (IBA). Eighty-five percent of shoots rooted after culture on woody plant medium (WPM) containing 4.9 μM IBA for 2 weeks and then on hormone-free WPM medium containing 2.0 g·L−1 activated charcoal for 4 weeks. Eight independently regenerated triploid plants have been identified. Triploid plant regeneration rates observed were 0.42% from immature endosperm explants and 0.34% from mature endosperm explants, respectively, based on the number of endosperm explants cultured. Because triploid plants cannot produce viable seeds, and thus are sterile and non-invasive, some triploid E. alatus plant lines reported here can be used to replace the currently used invasive counterparts. Chemical names used: benzyladenine (BA), indole-3-butyric acid (IBA), and α-naphthaleneacetic acid (NAA).