Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Yu Shi x
  • Refine by Access: All x
Clear All Modify Search
Free access

Ju Ding, Kai Shi, Yan-Hong Zhou, and Jing-Quan Yu

Root and foliar applications of 24-epibrassinolide (EBL), an immobile phytohormone with antistress activity, were evaluated for their effects on reducing fusarium wilt and their influence on antioxidant and phenolic metabolism in roots of cucumber plants (Cucumis sativus L. cv. Jinyan No. 4). EBL pretreatment significantly reduced disease severity together with improved plant growth and reduced losses in biomass regardless of application methods. EBL treatments significantly reduced pathogen-induced accumulation of reactive oxygen species (ROS), flavonoids, and phenolic compounds, activities of defense-related and ROS-scavenging enzymes. The enzymes included superoxide dismutase, ascorbate peroxidase, guaiacol peroxidase, catalase as well as phenylalanine ammonia-lyase and polyphenoloxidase. There was no apparent difference between two application methods used. EBL applications triggered a slight increase in H2O2 concentration followed by increases in the transcript levels of WRKY transcription factor and defense-related genes. This study demonstrated that EBL enhanced resistance to fusarium wilt by a novel mechanism that was not related to its active transport or increase in antioxidant system.

Full access

Jinghua Guo, Yan Yan, Lingdi Dong, Yonggang Jiao, Haizheng Xiong, Linqi Shi, Yu Tian, Yubo Yang, and Ainong Shi

Hydroponics has been an increasingly important field of vegetable production. However, a big issue with hydroponics is that certain crops can quickly accumulate high levels of nitrate-N (NO3 ± -N) from the hydroponic system. The objective of this research was to decrease NO3 accumulation and increase the nutritional value and yield of vegetable crops using lettuce and oilseed rape as a model under hydroponic production. In this study, two technologies were applied to leafy vegetable production: 1) using supplementary lighting (blue-violet diode) by manipulating illumination and 2) removing fertilization before harvest for a short term (3 or 5 days), thus providing a practical experiment for improving yield and edible qualities of hydroponic leaf vegetable production. Illumination was applied 4 hours a day (0500–0700 hr and 1700–1900 hr) during good weather, or 12 hours a day during bad weather with insufficient natural light (<2000 lux) during the autumn and winter seasons. Results showed that the lettuce cultivar Ou-Luo and the oilseed rape cultivar Ao-Guan Pakchoi had increased yield (50.0% and 88.3%, respectively), decreased NO3 content (26.3% and 30.8%, respectively), and increased total soluble solids (24.1% and 30.6%, respectively). The 5-day fertilizer-free treatment before harvest resulted in 19.2%, 6.4%, and 16.5% yield increases; and 26.0%, 24.3%, and 47.8% NO3 decreases in oilseed rape cultivar Ao-Guan Pakchoi and lettuce cultivars Da-Su-Sheng and Ou-Luo, respectively.

Full access

Chun-hui Shi, Xiao-qing Wang, Xue-ying Zhang, Lian-ying Shen, Jun Luo, and Yu-xing Zhang

This study explored the effects of different colored bags (blue, green, white, yellow, orange, and red) on russet deposition on the peel of semi-russet ‘Cuiguan’ pears 10 days after full bloom (DAFB). The process of russeting of the peel and structure of the cork layer were characterized by microscopy and scanning electron microscopy (SEM), followed by the detection of lignin and the activity of enzymes involved in lignin synthesis. The expression of cinnamate-4-hydroxylase, 4-coumarate:coenzyme A ligase, cinnamyl alcohol dehydrogenase, cinnamoyl-CoA reductase, and peroxidase, which were related to phenylalanine ammonia-lyase, was determined via real-time quantitative polymerase chain reaction. Russeting of the outer peel of ‘Cuiguan’ pear accumulated rapidly at 80 DAFB, and a positive relationship between the russet index and lignin content was observed. Red and infrared (IR) ray, partial far-IR light (600–800 nm), and ultraviolet-A light (350–400 nm) promoted russeting in ‘Cuiguan’ pear peel, whereas green light decreased russeting, the russet index, enzymatic activities, and the expression levels of enzymes involved in lignin synthesis. Values of all these factors were higher for ‘Cuiguan’ pears in red bags than for those in bags of other colors. These findings suggested that spectral components affected the synthesis of lignin and the formation of fruit russet. Storage in green bags reduced russeting and improved fruit appearance.

Free access

Yi Zhang, Xiao-Hui Hu, Yu Shi, Zhi-Rong Zou, Fei Yan, Yan-Yan Zhao, Hao Zhang, and Jiu-Zhou Zhao

We studied the effects of exogenous spermidine (Spd) on plant growth and nitrogen metabolism in two cultivars of tomato (Solanum lycopersicum) that have differential sensitivity to mixed salinity-alkalinity stress: ‘Jinpeng Chaoguan’ (salt-tolerant) and ‘Zhongza No. 9’ (salt-sensitive). Seedling growth of both tomato cultivars was inhibited by salinity-alkalinity stress, but Spd treatment alleviated the growth reduction to some extent, especially in ‘Zhongza No. 9’. Exogenous Spd may help reduce stress-induced increases in free amino acids, ammonium (NH4 +) contents, and NADH-dependent glutamate dehydrogenase (NADH-GDH) activities; depress stress-induced decreases in soluble protein and nitrate content; and depress nitrate reductase, nitrite reductase, glutamine synthetase (GS), NADH-dependent glutamate synthase (NADH-GOGAT), glutamate oxaloacetate transaminase (GOT), and glutamate pyruvate transaminase (GPT) activities, especially for ‘Zhongza No. 9’. Based on our results, we suggest that exogenous Spd promotes the assimilation of excess toxic NH4 + by coordinating and strengthening the synergistic action of NADH-GDH, GS/NADH-GOGAT, and transamination pathways, all during saline-alkaline stress. Subsequently, NH4 + and its related enzymes (GDH, GS, GOGAT, GOT, and GPT), in vivo, are maintained in a proper and balanced state to enable mitigation of stress-resulted damages. These results suggest that exogenous Spd treatment can relieve nitrogen metabolic disturbances caused by salinity-alkalinity stress and eventually promote plant growth.

Free access

Yu-Tsung Lin, Chia-Wei Lin, Chien-Hung Chung, Mei-Hsiu Su, Hsiu-Yin Ho, Shi-Dong Yeh, Fuh-Jyh Jan, and Hsin-Mei Ku

This study was undertaken to establish for the first time an efficient regeneration and transformation system for Cucumis metuliferus line PI292190, which is the source of a well-defined resistant gene, Wmv, that provides resistance against Papaya ringspot virus type P (PRSV-P) and PRSV-W (formerly known as Watermelon mosaic virus 1, WMV-1). Different combinations of growth regulators were evaluated for the regeneration of cotyledon explants. Adventitious buds or shoot primordia were obtained within 3 to 4 weeks on regeneration medium. After shoot development, adventitious buds or shoot primordia were transferred to elongation medium for 3 to 4 weeks and these shoots were subcultured onto rooting medium for another 1 to 2 weeks. Under optimal culture conditions, a total of 7 to 10 weeks was necessary to obtain C. metuliferus plantlets from cotyledons. Furthermore, transgenic plants were successfully obtained using an Agrobacterium tumefaciens-mediated transformation method as shown by polymerase chain reaction analysis and histochemical β-glucuronidase (GUS) assay. A total of nine transgenic plants were developed from 360 cotyledon explants, giving a transformation frequency of 2.5%.