Search Results
The use of water-soluble chemical fertilizers for years under drip irrigation conditions results in soil compaction, fertility decline, and fruit quality decrease in arid areas. Currently, little research has been reported regarding the effects of increasing organic fertilizer and reducing drip chemical fertilizer on the growth of grape plants under different conditions in arid areas. In this study, five different treatments were conducted. Compared with no fertilizer for 3 consecutive years (CK) and single fertilizer for 3 consecutive years (T0), organic fertilizer plus 1 year of reducing drip chemical fertilizer (T1), organic fertilizer plus 2 years of reducing drip chemical fertilizer (T2), and organic fertilizer plus 3 years of reducing drip chemical fertilizer (T3) improved the soil pH, electrical conductivity (EC) values, and soil organic matter content to different degrees during early growth stages (15 days after anthesis) and mature stages (75 days after anthesis). The available N, P, and K contents in the T1 and T2 treatments increased significantly. With the T2 treatment, the longitudinal and transverse diameters of the ‘Summer Black’ grapes were the largest during the two fruit expansion periods. The anthocyanin content of grape peel with the T2 treatment was 22.0% higher than that with the T0 treatment. The soluble solids, sugar–acid ratio, various sugar contents, vitamin C, and total phenol of the fruit increased significantly with the T2 treatment, indicating that the T2 treatment was best for promoting grape growth and fruit quality and that the T3 treatment was the second best.
Perennial ryegrass (Lolium perenne L.) is a popular cool-season forage and turfgrass in temperate regions. Due to its self-incompatible and out-crossing nature, perennial ryegrass may show a high degree of heterozygosity. Perennial ryegrass generally is susceptible to drought stress, but variations of drought response of individual genotypes within a particular accession or cultivar are not well understood. The objective of this study was to characterize phenotypic diversity of drought tolerance within and among accessions in relation to genetic diversity in perennial ryegrass. Five individual genotypes from each of six accessions varying in origin and growth habits were subjected to drought stress in a greenhouse. Leaf wilting, plant height, chlorophyll fluorescence (Fv/Fm) and leaf water content (LWC) differed significantly among accessions as well as among genotypes within each accession under well-watered control and drought stress conditions. Fv/Fm was highly correlated with LWC under drought stress. Genetic diversity among and within accessions were identified by using previously characterized 23 simple sequence repeat markers. Across accessions, the mean major allele frequency, gene diversity, and heterozygosity values were 0.66, 0.43, and 0.66, respectively. Accessions with closer genetic distance generally had similar drought responses, while accessions with greater genetic distance showed distinct drought tolerance. Significant differences in drought tolerance among and within accessions, especially for individual genotypes within one accession, indicated that variations of drought response could be used for enhancing breeding programs and studying molecular mechanisms of stress tolerance in perennial ryegrass.
Perennial ryegrass (Lolium perenne) is an important cool-season forage and turfgrass species. Growth and physiological responses of perennial ryegrasses to chronic deficit irrigation (DI) and recovery following a water deficit event are not well understood. The objective of this study was to characterize plant growth, water status, and gene expression in response to DI and recovery of perennial ryegrass. Two accessions, PI598453 (drought tolerant) and PI403847 (drought susceptible), were subjected to irrigation treatments with 100% evapotranspiration (ET) replacement every other day as the control (100% ET) and 70% ET replacement as DI treatment for 21 days in a greenhouse. After the treatment period, the DI-treated plants were shifted back to 100% ET for 7 days for recovery. The grasses were cut every 7 days, for a total of three times. Leaf relative water content (LRWC) significantly decreased at 21 days of 70% ET for both accessions, compared with the control; but to a greater extent in the more susceptible PI403847. Water-use efficiency (WUE) significantly increased 1.6-fold for PI598453 and 1.3-fold for PI403847 under 70% ET, whereas 33% reduction of leaf dry weight (LDW) was found only in PI403847. Plant height (HT) and leaf length (LL) were unaffected by 70% ET after the first two cuttings, but decreased after the third cut and did not recover to the control level for both accessions. Reductions in leaf width (LW) under 70% ET were found at 8 and 6 days after cutting for PI598453 and for PI403847, respectively. The transcript levels of heat shock protein (HSC70), iron superoxide dismutase (FeSOD), and plasma membrane intrinsic protein type 1 (PIP1) in both leaves and stems were generally downregulated during 70% ET treatment with a few exceptions but fully recovered to 100% ET after rewatering. The expression levels of cytosolic copper/zinc superoxide dismutase (cyto Cu/Zn SOD) and light-harvesting Chl a/b-binding proteins (LHCB) did not alter under 70% ET for both accessions. Differential growth and physiological responses of perennial ryegrass accessions to DI could be used for further studying of molecular mechanisms of drought tolerance in perennial ryegrass.
Hot pepper (Capsicum annuum cv. Battle) was grown in a 1:1 v/v sand-to-cotton stalk compost and subjected to four irrigation treatments: 100% of water-holding capacity (control) and 85%, 70%, and 55% of water-holding capacity, which were considered deficit irrigation treatments. All treatments were given to the plants at the first day of transplanting and continued during the whole growing season. Our results demonstrated that deficit irrigation had a negative effect on plant growth and yield. Increasing irrigation deficiency exhibited a reduction in vegetative growth, fruit parameters, and yield and a nonsignificant increase in irrigation water use efficiency and a corresponding reduction in the amount of irrigation water. Vitamin C content in fruit was significantly decreased by deficit irrigation treatments at various ripening stages. Water-holding capacity of 100% and 85%, respectively, resulted in the highest content of vitamin C obtained at the ripening stage. We concluded that ‘Battle’ hot pepper is sensitive to deficit irrigation. Supplying this cultivar with water at 85% of water-holding capacity could be a practical irrigation technique for high value of vitamin C production as well as saving a large amount of water, which outweighs the decrease in total fresh yield of fruit, especially in areas suffering from water shortage.
Prairie junegrass (Koeleria macrantha) is a native cool-season C3 grass that has shown potential as a low-input turfgrass. An increased understanding of the physiological and molecular responses of prairie junegrass to water-deficit conditions is important for developing cultivars with enhanced drought tolerance. The objective of this study was to characterize the antioxidative responses and candidate gene expression in prairie junegrass subjected to drought stress. Two drought-tolerant (TOL-1 and TOL-2) and two drought-susceptible (SUS-1 and SUS-2) genotypes of prairie junegrass were subjected to 7 days of drought stress. Leaf relative water content (RWC) of SUS-1 and SUS-2 was 72.1% and 73.8% and RWC of TOL-1 and TOL-2 was 90.1% and 85.4% in drought-stressed plants, respectively. Drought stress did not affect chlorophyll fluorescence, lipid peroxidation, and antioxidative enzyme activities of superoxide dismutase (SOD), catalase (CAT), peroxidase, ascorbate peroxidase (APX), or glutathione reductase for tolerant or susceptible genotypes. The TOL-2 and SUS-2 genotypes were further examined for candidate gene expression. Drought stress did not alter expression levels of CAT and chloroplastic copper/zinc SOD (Cu/ZnSOD), but increased levels of APX in either genotype, compared with their relative controls. Expression of P5CS encoding Δ1-pyrroline-5-carboxylate synthetase and P5CR encoding Δ1-pyrroline-5-carboxylate reductase for proline biosynthesis were up-regulated under drought stress for both genotypes; however, expression of P5CR was more strongly induced under drought stress for TOL-2, compared with its control. The expression of 1-FFT encoding fructan:fructan 1-fructosyltransferase, which is involved in fructan biosynthesis, was strongly induced under drought stress for TOL-2 but not detected under either control or drought stress conditions for SUS-2. These results indicate that the genes involved in proline and fructan biosynthesis may play an important role in drought tolerance in prairie junegrass.
The application of plant growth regulators (PGRs), such as abscisic acid (ABA), putrescine (Put), and 2,4-epibrassinolide (EBR), has been shown to enhance a plant's resistance to various abiotic stresses. However, the protective effects of these PGRs on tomato (Solanum lycopersicum) seedlings under suboptimal temperature stress have not yet been evaluated. We also do not know the most effective method of application of PGRs for various tomato cultivars. We studied the effects of three rates of exogenous ABA, Put, or EBR in limiting damage from suboptimal temperature stress on two tomato cultivars, Zhongshu6 (considered sensitive to suboptimal temperatures) and SANTIAM (considered tolerant to suboptimal temperatures). Results showed that application of these PGRs at appropriate concentrations could effectively reduce the decline in the net photosynthetic rate (Pn) and the chlorophyll (Chl) content in leaves caused by suboptimal temperature stress in both ‘Zhongshu6’ and ‘SANTIAM’ and could promote an increase in organic osmolyte (proline and soluble sugar) contents and root 2,3,5-triphenyltetrazolium chloride (TTC)-reducing activity for ‘Zhongshu6’. However, these effects were inferior on ‘SANTIAM’. For both cultivars, the best treatment concentrations are 1 mm ABA, 0.1 mm Put, or 0.02 μM EBR. Results indicate that in tomato production, exogenous application of ABA, Put, or EBR at appropriate concentrations can effectively limit damage from suboptimal temperature stress.
Changes in leaf length, width, area, weight, chlorophyll and carotenoids contents, and photosynthetic variables with different leaf positions were investigated in fruit cucumber. Plants were grown on rockwool slabs in an environmentally controlled greenhouse and irrigated by drip fertigation. Leaf measurements were conducted from the first to the 15th leaf (the oldest to the youngest). The results showed that fresh weight per unit leaf area decreased from the second to the 15th leaf. Changes in cucumber leaf length, width, and area followed quadratic models from the first to the 15th leaf. The quadratic models of leaf length, width, and area fit the measurements well, with R 2 values of 0.925, 0.951, and 0.955, respectively. The leaf chlorophyll a and b and carotenoid contents increased from the oldest leaf (first leaf) to the youngest leaf and decreased after reaching the highest values. Changes in the net photosynthetic rate (Pn) also followed the quadratic model from the first to the 15th leaf, with R 2 values of 0.975. The leaf transpiration rate (Tr) increased from the first to the 14th leaf. Our results revealed patterns in leaf growth and photosynthetic changes at different leaf positions in fruit cucumber and improved our understanding of the growth and development of fruit cucumber in the greenhouse production system.
The identification and evaluation of tea [Camellia sinensis (L.) O. Kuntze] germplasm resources are of great significance for tea plant breeding. In recent years, various methods, such as morphology, biochemistry, molecular markers, and sensory evaluation, have been used to evaluate the tea germplasm resources. However, the evaluation of tea germplasms based on metabolomics is rarely reported. In this study, we first measured the main agronomic characters and biochemical components of tea young shoots in spring, and then analyzed the metabolic profiles using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography with tandem mass spectrometry (LC-MS/MS). The results indicate that tea germplasm accessions QN3 and QN38 had excellent agronomic traits with early germination and high yield compared with HM. The biosynthesis of flavonoids in young shoots of QN3 was more vigorous, especially for the biosynthesis of epigallocatechin gallate (EGCG) and epicatechin gallate (ECG). Accession QN3 had highest content of luteoloside, myricetin and rutin, whereas QN38 had highest content of most amino acids. On the basis of sensory quality evaluation, accession QN3 and QN38 all had higher total quality scores. By using these approaches, we found that QN3 and QN38 are excellent breeding materials with high yield and high quality for making green teas. We also believe that the evaluation system constructed by the approaches described here is suitable for the identification of tea germplasms.
Heat stress (HS) negatively influences plant development and growth, especially production and quality. Cucumber is a widely cultivated plant in the gourd family Cucurbitaceae that is often exposed to high temperatures during summer and protected cultivation. In this study, we performed whole-genome re-sequencing of two pools, one heat-tolerant and one heat-sensitive, of the F2 population derived from L-9 (heat-resistant) and A-16 (heat-sensitive). The genetic analysis showed that the heat resistance of L-9 cucumber seedlings was controlled by a single recessive gene. By combining bulked segregant analysis (BSA) technology, the crucial gene related to HS was preliminarily mapped to a 1.08-Mb region on chromosome 1. To fine-map the locus, Indel markers were designed according to the genomic sequence. Finally, the gene was narrowed to a 550-kb region flanked by two Indel markers, namely Indel-H90 and Indel-H224, that contained 56 candidate genes. Re-sequencing results indicated that 10 candidate genes among the 56 in the candidate region showed single base pair differences in the exons. Quantitative reverse-transcription polymerase chain reaction showed that 6 genes among the 10 candidate genes were significantly decreased when exposed to high temperatures. These results not only were useful for the isolation and characterization of the key genes involved in HS but also provided a basis for understanding the mechanism of heat tolerance regulation.
Adequate greenhouse environmental management is very important for improving resource use efficiency and increasing vegetable yield. The objective of this study was to explore suitable climate and cultivation management for cucumber to achieve high yield and build optimal yield models in semi-closed greenhouses. A fruit cucumber cultivar Deltastar was grown over 4 years in greenhouse and weekly data of yields (mean, highest and lowest) and environmental variables, including total radiation, air temperature, relative humidity, and carbon dioxide (CO2) concentration were collected. Regression analyses were applied to develop the relationships and build best regression models of yields with environmental variables using the first 2 years of data. Data collected in years 3 and 4 were used for model validation. Results showed that total radiation, nutrient, temperature, CO2 concentration, and average nighttime relative humidity had significant correlations with cucumber yields. The best regression models fit the mean, lowest, and highest yields very well with R 2 values of 0.67, 0.66, and 0.64, respectively. Total radiation and air temperature had the most significant contributions to the variations of the yields. Our results of this study provide useful information for improving greenhouse climate management and yield forecast in semi-closed greenhouses.