Search Results
Foliar sprays of B (400 ppm), Ca (4000 ppm), B (400 ppm) + Ca (4000 ppm), or water (control) were applied in Sept. 1993 to treatment plots of 12 lowbush blueberry (Vaccinium angustifolium) clones having low leaf B concentrations (<20 ppm). Boron concentration was raised in stem and bud tissue 3 months after application, but Ca concentration was unaffected. Twenty randomly selected stems with four flower buds were tagged in each treatment plot in Apr. 1994 to determine treatment effects on fruit set and fruit characteristics. Blossoms on tagged stems were counted in late May and a count of initial fruit was taken in early July. Initial fruit set was reduced slightly by the Ca treatment, which also resulted in a lower number of flowers per bud. Tagged stems were cut before plot harvest and stored at –15C for final fruit set and fruit characteristic measurements (fruit number, diameter, weight, and firmness, and seed number and size). Treated plots were harvested and weighed in August. Boron and Ca treatments did not increase yields averaged across all clones, but some clones showed a positive response. Yield of Ca-treated plots was significantly lower than the plots without Ca treatment. Effect of treatments on final fruit set and fruit characteristics will be presented.
Ten clones of lowbush blueberry (Vaccinium angustifolium) having low leaf boron (B) concentrations (<20 ppm) were selected to receive fall foliar B (400 ppm), Ca (4000 ppm), B (400 ppm) + Ca (4000 ppm), or water (control). B concentration was raised in stem and bud tissue 3 months after application, but Ca concentration was unaffected. Two randomly selected 5-inch sod plugs from treatment plots within each clone were transported to cold storage at 2.7C for 1000 h to satisfy flower bud dormancy, then to a growth chamber at 24C to blossom. Pollen from plants receiving B had lower in vitro germination rates on 5% agar with 12% lactose after 20 h compared to control and Ca treatments. For in vivo germination, 10 blossoms were randomly selected on sod plugs of each treatment plot to receive 15 control-treatment pollen grains, which were allowed to germinate for 3 days. With the aid of fluorescence microscopy, a higher pollen germination percentage was observed in blossoms of plants receiving B, Ca, and B + Ca. B and Ca may have more influence on the ability of the stigma to stimulate pollen germination than on the germinability of pollen grains themselves.
In a managed field of native Vaccinium angustifolium Ait. clones, the effect of fall foliar sprays of B at 345 g·ha-1 and/or Ca at 3,450 g·ha-1 in remedying tissue deficiency of B varied among 12 clones, as seen in pollen germinability and on individual stems as seen in flower number, fruit set, and number of harvestable berries. With Ca applied alone, increased berry size did not overcome yield reduction due to fewer flowers and berries per stem. Berry diameter and mass correlated better to number of seeds of germinable size than to total number of seeds. Pollen germination averaged 17.4% on stigmata from untreated clones, and all three treatments (B, Ca, B + Ca) increased that average by 8%. More seeds per berry with the B-alone treatment implies more ovules fertilized when B deficiency is remedied. No relation was found between in vitro and in vivo pollen germination.
Twenty stems with four fruit buds were tagged in each of ten lowbush blueberry (Vaccinium angustifolium Ait.) clones in a commercial field to assess fruit set and fruit size and weight characteristics. The terminal bud produced the fewest blossoms and fruit but fruit set was equal among all buds (65%–70%). Fruit at bud 4 were slightly smaller in diameter and weighed less than those produced at other buds. Clones with buds producing more blossoms per bud tended to produce more fruit per bud (pearson corr. coeff., r = 0.49), but a stronger correlation was found between fruit set and fruit number (r = 0.81).