Search Results

You are looking at 1 - 10 of 44 items for

  • Author or Editor: Youping Sun x
Clear All Modify Search
Authors: and

Albizia julibrissin (mimosa tree) and Sophora japonica (Japanese pagoda tree) are drought-tolerant landscape plants; however, salinity responses of these two species are not well documented. The objective of this study was to investigate the morphological and physiological responses of these two species to three salinity levels in greenhouse conditions. Two studies were conducted in the summer/early fall of 2020 and the spring of 2021. In 2020, uniform plants were irrigated weekly for the first 2 weeks and every other day for the following 3 weeks with a nutrient solution at an electrical conductivity (EC) of 1.2 dS·m−1 as a control or saline solution at ECs of 5.0 or 10.0 dS·m−1. In 2021, plants were irrigated weekly for 8 weeks with the same treatment solutions as described previously. Albizia julibrissin and S. japonica survived in both experiments with minimal foliar salt damage (leaf burn or necrosis). Irrigation water at ECs of 5.0 and 10.0 dS·m−1 reduced plant height and dry weight (DW) of both species. In the fall experiment, A. julibrissin irrigated with a saline solution at an EC of 10.0 dS·m−1 had the highest reduction in plant height (61%) compared with the control. Albizia julibrissin and S. japonica irrigated with a saline solution at an EC of 10.0 dS·m−1 had 52% and 47% reductions in shoot DW compared with the control, respectively. In the spring experiment, compared with the control, there were 72% and 45% reductions in height of A. julibrissin and S. japonica, respectively, when irrigated with saline solution at an EC of 10.0 dS·m−1. In addition, compared with the control, A. julibrissin and S. japonica had 58% and 64% reductions in shoot DW, respectively, when irrigated with saline solution at an EC of 10.0 dS·m−1. Increasing salinity levels in the irrigation water also reduced leaf greenness [Soil Plant Analysis Development (SPAD)], leaf net photosynthesis rate (Pn), stomatal conductance (g S), and transpiration rate (E) of both species. Furthermore, sodium (Na+) and chloride (Cl) concentrations in leaves were affected by elevated salinity levels in the irrigation water. Visual score, Pn, g S, and E negatively correlated to Na+ and Cl concentrations in leaves. But Cl accumulation had more impact on the growth of A. julibrissin and S. japonica. In summary, both species were tolerant to saline solution irrigation up to 5.0 dS⋅m−1 and moderately tolerant to saline solution irrigation up to 10.0 dS⋅m−1.

Open Access
Authors: and

Native plants are of great value in landscape maintenance. Despite their importance in the landscape, the salt tolerance of most native plants has received little attention. The present research was designed to assess morphological, physiological, and biochemical responses of four Utah-native plants [Arctostaphylos uva-ursi (kinnikinnick), Cercocarpus ledifolius (curl-leaf mountain mahogany), Cercocarpus montanus ‘Coy’ (alder-leaf mountain mahogany), and Shepherdia ×utahensis ‘Torrey’ (hybrid buffaloberry)] at different salinity levels. Each species was irrigated with a nutrient solution at an electrical conductivity (EC) of 1.2 dS·m−1 (control) or saline solutions at ECs of 5.0 or 10.0 dS·m−1 for 8 weeks. The experiment was a randomized complete block design with 10 replications. At 8 weeks after the initiation of the experiment, A. uva-ursi and C. montanus ‘Coy’ had slight foliar salt damage with an average visual score of 3.7 (0 = dead, 5 = excellent with no sign of foliar salt damage) when irrigated with saline solution at an EC of 5.0 dS·m−1 and were dead at an EC of 10.0 dS·m−1. Similarly, C. ledifolius had an average visual score of 3.2 when irrigated with saline solution at an EC of 10.0 dS·m−1. However, almost no foliar salt damage was observed on S. ×utahensis ‘Torrey’ during the experimental period. In addition, the shoot dry weight of all species was reduced with elevated salinity levels in the irrigation water. Salinity stress also reduced gas exchange rates of plants and affected their mineral content. Proline accumulated in the leaves of native plants but was species-dependent. In conclusion, S. ×utahensis ‘Torrey’ was tolerant to salinity stress followed by C. ledifolius; A. uva-ursi and C. montanus ‘Coy’ were sensitive to salinity stress.

Open Access

Nodal segments containing one axillary bud (1 to 1.5 cm) were disinfected using 10% bleach and were established on a Murashige and Skoog (MS) medium without hormones at 27 °C and with a 16-h photoperiod. The sprouted shoots (≈1.0 cm) were cultured on a MS medium supplemented with 6-benzylaminopurine (BAP), kinetin (KIN), or zeatin (ZT) at 2.3, 4.5, 9.1, or 18.2 μM. After 38 d, ZT and BAP significantly induced multiple shoot formation with multiplication rates of 4 to 6, whereas the multiplication rate of KIN was less than 2. Shoots cultured on ZT grew significantly taller than those on BAP and KIN. The height of the longest shoots treated with ZT was 4.6 cm, which was 1.6 to 2.2 times greater than those treated with BAP or KIN. To induce rooting, shoots (≈2 cm) were subcultured on one-fourth strength MS (1/4 MS) medium containing either 3-indolebutyric acid (IBA) or 1-naphthylacetic acid (NAA) at 2.6, 5.1, or 10.3 μM. Adventitious roots formed in vitro after 2 to 4 weeks. IBA at 10.3 μM produced the best rooting (100%) compared with other treatments after 38 d of culture. The average number of roots per shoot for IBA was ≈15, which was 1.6 to 3.1 times as many as that of other treatments. All rooted plantlets were then transplanted into a mix of peatmoss and perlite (1:1 v/v) and acclimatized in a mist system. Average plantlet survival was 73.6% after 35 d. After acclimatization, they were grown in a pot with Metro-mix under greenhouse conditions for 10 weeks where 95% of plants survived and grew up to 6.8 cm high. The micropropagation procedure, i.e., nodal segments containing one axillary bud proliferated on MS with 4.5 μM ZT followed by in vitro rooting on 1/4 MS plus 10.3 μM IBA, could be used for commercial mass production of new inkberry cultivars.

Free access

Salt tolerance of seven Texas Superstar® perennials [Malvaviscus arboreus var. drummondii (Turk’s cap), Phlox paniculata ‘John Fanick’ (‘John Fanick’ phlox), Phlox paniculata ‘Texas Pink’ (‘Texas Pink’ phlox), Ruellia brittoniana ‘Katie Blue’ (‘Katie Blue’ ruellia), Salvia farinacea ‘Henry Duelberg’ (‘Henry Duelberg’ salvia), Salvia leucantha (mexican bush sage), and Verbena ×hybrida ‘Blue Princess’ (‘Blue Princess’ verbena)] was evaluated in a greenhouse experiment. Plants were irrigated with a nutrient solution at electrical conductivity (EC) of 1.1 dS·m−1 (control) or a salt solution at EC of 5.0 or 10.0 dS·m−1 (EC 5 or EC 10) for 8 weeks. ‘John Fanick’ and ‘Texas Pink’ phlox plants in EC 5 had severe salt foliage damage, while those in EC 10 were died. Mexican bush sage in EC 10 had severe salt foliage damage. Turk’s cap, ‘Katie Blue’ ruellia, ‘Henry Duelberg’ salvia, and ‘Blue Princess’ verbena had minor foliar damage regardless of treatment. EC 5 reduced the shoot dry weight (DW) by 45% in ‘Texas Pink’ phlox and 11% to 18% in ‘Katie Blue’ ruellia, ‘Henry Duelberg’ salvia, and mexican bush sage, but did not impact the shoot DW of Turk’s cap and ‘John Fanick’ phlox. EC 10 further decreased the shoot DW of ‘Katie Blue’ ruellia, ‘Henry Duelberg’ salvia, and mexican bush sage plants by 32%, 29%, and 56%, respectively. EC 5 decreased leaf net photosynthesis (Pn) of ‘Texas Pink’ phlox and mexican bush sage, while EC 10 reduced Pn of all species except ‘Henry Duelberg’ salvia and ‘Blue Princess’ verbena. ‘Katie Blue’ ruellia and ‘Blue Princess’ verbena had relatively lower leaf Na concentration and ‘John Fanick’ phlox, ‘Texas Pink’phlox, and mexican bush sage had higher leaf Cl concentrations. In summary, Turk’s cap, ‘Katie Blue’ ruellia, ‘Henry Duelberg’ salvia, and ‘Blue Princess’ verbena were the most tolerant perennials, and ‘John Fanick’ phlox, ‘Texas Pink’ phlox, and mexican bush sage were the least tolerant to salinity.

Free access

Excessive salinity in soil and irrigation water in combination with waterlogging in coastal regions can significantly reduce the productivity of many agricultural crops. To evaluate the plant growth responses to simulated seawater (SSW) flooding, seedlings of 10 vegetables (broccoli, chinese cabbage, chinese greens, cucumber, eggplant, kale, radish, ‘Red Crunchy’ radish, spinach, and tomato) were flooded with SSW at electrical conductivity (EC) of 44.0 ± 1.3 dS·m−1 or tap water at EC of 0.8 ± 0.1 dS·m−1 for 24 hours and grown subsequently for 2 weeks in a greenhouse. Chinese greens and cucumber plants died shortly after flooding with SSW, whereas other vegetables exhibited various degrees of visible salt damage. Chinese cabbage suffered the strongest reduction, whereas spinach, tomato, and eggplant exhibited the least decrease in dry weight (DW) due to SSW flooding in comparison with their perspective control. Two weeks after flooding treatment with SSW, net photosynthetic rate of broccoli, kale, spinach, and tomato was reduced by 43% to 67%, transpiration rate by 35% to 66%, and stomatal conductance (g S) by 51% to 82%. In summary, spinach, eggplant, and tomato were the most tolerant, whereas chinese cabbage, chinese greens, and cucumber were the least tolerant to SSW flooding.

Free access
Authors: , , and

To provide more species for landscapes where poor-quality irrigation water is used, salt tolerance of commonly used landscape plants should be characterized. Nine ornamental species, including six herbaceous and three woody, were irrigated with nutrient solution at electrical conductivity (EC) of 1.2 dS·m−1 (control) or saline solution at EC of 5.0 or 10.0 dS·m−1 (EC 5 or EC 10) for 8 weeks and their growth and physiological responses were determined. Although growth was reduced in orange peel jessamine (Cestrum ‘Orange Peel’) and mexican hummingbird bush (Dicliptera suberecta) as salinity increased, no obvious signs of stress or injury were observed, indicating that orange peel jessamine and mexican hummingbird bush were the most salt tolerant. Flame acanthus (Anisacanthus quadrifidus var. wrightii), rock rose (Pavonia lasiopetala), and ‘Dark knight’ bluebeard (Caryopteris ×clandonensis ‘Dark Knight’) had more growth reduction than that of orange peel jessamine and mexican hummingbird bush with minimal or no foliar damage in EC 5 and slight foliar damage in EC 10. Cardinal flower (Lobelia cardinalis) and mexican false heather (Cuphea hyssopifolia) exhibited mortality rates of 30% and 20%, severe foliar damage, and greater than 70% reduction in leaf area and dry weight in EC 10 compared with their respective controls. Although the growth reductions in butterfly blue (Scabiosa columbaria) were not as great as cardinal flower and mexican false heather, 40% of butterfly blue plants were dead with moderate foliar damage in EC 10. Therefore, cardinal flower, mexican false heather, and butterfly blue plants were considered as moderately salt sensitive. Eastern red columbine (Aquilegia canadensis) was the most salt sensitive among the species investigated with moderate foliar damage in EC 5 and all plants died in EC 10. Four out of the nine species tested had significant differences in net photosynthetic rate (Pn), stomatal conductance (g s), and/or relative chlorophyll content between the control and EC 10, and the difference varied with species. Shoot ion concentrations of the nine ornamentals were also affected by salinity levels and varied among species.

Free access

Ornamental grasses are popular in urban landscapes in Utah and the Intermountain West United States, one of the driest and fastest growing regions in the United States. This experiment evaluated the responses of five ornamental grass species [blue grama (Bouteloua gracilis), indian sea oats (Chasmanthium latifolium), ‘Blue Dune’ sand ryegrass (Leymus arenarius), pink muhly grass (Muhlenbergia capillaris), ‘Foxtrot’ fountain grass (Pennisetum alopecuroides)] and two ornamental grasslike species [fox sedge (Carex vulpinoidea), common rush (Juncus effusus)] to saline irrigation water in a greenhouse. Plants were irrigated weekly with a nutrient solution at an electrical conductivity (EC) of 1.2 dS·m–1 (control) or saline solutions at an EC of 5.0 or 10.0 dS·m–1. At the first harvest (9 weeks after the initiation of treatment), sand ryegrass, pink muhly grass, and fountain grass irrigated with solutions at an EC of 5.0 and 10 dS·m–1 had good visual quality with no or minimal foliar salt damage; however, the remaining species exhibited slight or moderate foliar salt damage. There were no significant differences in shoot dry weight (DW) among treatments within any species, except fox sedge and fountain grass. At the second harvest (18 weeks after the initiation of treatment), sand ryegrass, pink muhly grass, and fountain grass still had no or minimal foliar salt damage, and indian sea oats and fox sedge exhibited slight or moderate foliar salt damage. Compared with the control, all species irrigated with solutions at an EC of 10.0 dS·m–1 had reduced shoot DWs with the exception of blue grama. However, only common rush and pink muhly grass irrigated with solutions at an EC of 5.0 dS·m–1 had lower shoot DWs than the control. These results demonstrated that seven ornamental grass or grasslike species had a very strong tolerance to the salinity levels used in the 4-month experiment. Although plant growth was inhibited as a result of saline irrigation, plant visual quality of sand ryegrass, pink muhly grass, and fountain grass was still acceptable. These three species appear to be more suitable for landscapes in which saline irrigation water is used. Further research is needed to evaluate more ornamental grasses for landscapes in salt-prone areas and nearby coastal regions.

Free access

In response to the growing demand for specialty cut flowers, floral crops are increasingly produced in semiarid areas where soil salinity can impact crop timing, reduce stem length, and decrease yield. The goal of this study was to investigate the salinity sensitivity of ‘Carmel’ and ‘Galilee’ anemone (Anemone coronaria), and ‘Amandine’ and ‘LaBelle’ ranunculus (Ranunculus asiaticus) with respect to physiological characteristics and marketable yield. Nine plants were irrigated weekly for 8 weeks with a nutrient (control) solution with an electrical conductivity (EC) of 0.5 dS⋅m–1 or saline solutions prepared by adding sodium chloride and calcium chloride dihydrate to a nutrient solution to obtain an EC of 1.5, 2.5, 3.5, 4.5, or 5.5 dS⋅m–1. Yield was evaluated by dividing stems into marketable and cull grades based on length and bloom quality. At the end of the study, the visual quality of the plants was scored, and gas exchange data were collected using a portable photosynthesis system. Cultivars of each species responded similarly, and marketable yields were low across all treatments, with average marketable yields (mean ± sd) of 1.7 ± 0.6 stems/plant for anemone and 1.2 ± 0.1 stems/plant for ranunculus. Visual quality (0–5 scale, with 0 = dead and 5 = excellent) decreased from 3 to 1 for anemone and 3 to 2 for ranunculus as EC increased from 0.5 to 4.5 dS⋅m–1 and 0.5 to 5.5 dS⋅m–1, respectively. Anemone leaf greenness decreased by 48%, stomatal conductance (g S) decreased by 79%, transpiration (E) decreased by 75%, and net photosynthesis (Pn) decreased by 92% when irrigation solution EC increased from 0.5 to 4.5 dS⋅m–1. The ranunculus growth index decreased by 17%, leaf greenness decreased by 45%, and E decreased by 23% as irrigation solution EC increased from 0.5 to 5.5 dS⋅m–1. Both anemone and ranunculus can be considered sensitive to salinity, indicating the importance of careful soil management in cut flower production systems in semiarid areas that are at risk for elevated soil salinity.

Open Access