Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Young K. Joo x
Clear All Modify Search

We evaluated the response of Kentucky bluegrass (Pea pratensis L.) turf to urea amended with the urease inhibitors PPD, NBPT, and ATS and with the cations K+ (KCl) and Mg+2 (MgCl2). Treatments for the 2-year field experiment included liquid urea applied monthly in June to Sept. 1985 and 1986 at 49 kg N/ha with PPD (1%, 2%, 3% by weight of applied N), NBPT (0.5%, 1%, 2%), ATS (5%, 15%, 25%), K+ (5%, 15%, 25%), and Mg+2 (5%, 15%, 25%). The NBPT was included only in the 1986 field study. The Mg+2 and K+ reduced foliar burn and increased turf quality during mid- and late Summer 1985 at the 5% rate, but clipping yield was not affected by any treatment. In 1986, under milder climatic conditions, PPD and NBPT increased clipping yield by 13.2% and 15.2%, respectively. At the 15% rate, ATS increased clipping yield by 15.1%, but, on average, PPD and NBPT were much more effective. Chemical names used: phenylphosphorodiamidate (PPD), N-(n -butyl) thiophosphoric triamide (NBPT), and ammonium thiosulfate (ATS).

Free access

Fluorescent proteins (FT) have become essential, biological research tools. Many novel genes have been cloned from a variety of species and modified for effective, stable, and strong expression in transgenic organisms. Although there are many applications, FT expression has been employed most commonly at the cellular level in plants. To investigate FT expression at the whole-plant level, particularly in flowers, petunia ‘Mitchell Diploid’ [MD (Petunia ×hybrida)] was genetically transformed with seven genes encoding FTs: DsRed2, E2Crimson, TurboRFP, ZsGreen1, ZsYellow1, rpulFKz1, or aeCP597. Each gene was cloned into a pHK-DEST-OE vector harboring constitutive figwort mosaic virus 35S promoter and NOS-terminator. These plasmids were individually introduced into the genome of MD by Agrobacterium tumefaciens–mediated transformation. Shoot regeneration efficiency from the cocultured explants ranged from 8.3% to 20.3%. Various intensities of red, green, and yellow fluorescence were detected from TurboRFP, ZsGreen1, and ZsYellow1-transgenic flowers, respectively, under ultraviolet light for specific excitation and emission filters. More than 70% of plants established from the regenerated shoots were confirmed as transgenic plants. Transgenic ZsGreen1 petunia generated strong, green fluorescence in all flower organs of T0 plants including petals, stigmas, styles, anthers, and filaments. Most of the chromophores were localized to the cytoplasm but also went into the nuclei of petal cells. There was a positive linear relationship (R 2 = 0.88) between the transgene expression levels and the relative fluorescent intensities of the ZsGreen1-transgenic flowers. No fluorescence was detected from the flowers of DsRed2-, E2Crimson-, rpulFKz1-, or aeCP597-transgenic petunias even though their gene transcripts were confirmed through semiquantitative reverse transcriptase-polymerase chain reaction. T1 generation ZsGreen1 plants showed green fluorescence emission from the cotyledons, hypocotyls, and radicles, which indicated stable FT expression was heritable. Four homozygous T2 inbred lines were finally selected. Throughout this study, we demonstrated that ZsGreen1 was most suitable for generating visible fluorescence in MD flowers among the seven genes tested. Thus, ZsGreen1 may have excellent potential for better utility as a sensitive selectable marker.

Free access