Search Results
Leaves of Begonia semperflorens accumulate anthocyanins and turn red under low temperature (LT). In the present work, LT increased H2O2 content and superoxide anions production rate, causing significant increases in the activities of enzymes and contents of reduced components involved in the ascorbate-glutathione cycle (AsA-GSH cycle). As a result, LT-exposed seedlings increased the expression of genes involved in anthocyanin biosynthesis, and accumulated anthocyanin. Based on LT condition, application of N,N'-dimethylthiourea (DMTU) decreased reactive oxygen species (ROS) content, and unbalanced the AsA-GSH-controlled redox homeostasis. As a result, seedlings in the LT + DMTU group did not accumulate anthocyanin. Our results suggest that ROS may act as an important inducer in LT-induced anthocyanin biosynthesis.
Kaolin particle film (KPF) is an aqueous formulation of chemically inert mineral particles that can be sprayed on the surface of crops to form a protective film, resulting in increased fruit yield and quality. In this work, the effects of kaolin-based, foliar reflectant particle film on grape composition and volatile compounds in ‘Meili’ (Vitis vinifera L.) grapes were investigated under different growth stages over two growing seasons. The 100-berry weight and titratable acid content were decreased, and the sugar and soluble solid contents were increased in grapes of plants treated with kaolin over 2 years. Compared with grapes from plants not sprayed with kaolin, the levels of total phenol, flavonoid, flavanol, tannin, and anthocyanins of grapes from plants treated with kaolin for 2 years were mostly increased. High-performance liquid chromatography (HPLC) analysis also revealed an increased content of monomeric anthocyanin and changed anthocyanin composition. However, there was little effect on the volatile compounds in the grapes. These results demonstrate that KPF can facilitate the accumulation of sugar and phenolics, thereby improving grape quality even in a humid climate.
Dendrobium officinale Kimura et Migo is a famous traditional Chinese medicinal plant. It produces various phytochemicals, particularly polysaccharides, which have nutraceutical and pharmaceutical values. To increase its biomass production and polysaccharide content, our breeding program has generated a series of polyploid cultivars through colchicine treatment of protocorm-like bodies (PLBs). The present study compared two tetraploid cultivars, 201-1-T1 and 201-1-T2, with their diploid parental cultivar, 201-1, in an established in vitro culture system. Tetraploid ‘201-1-T1’ and ‘201-1-T2’ had shorter leaves and shorter and thicker stems and roots, and they produced higher biomass compared with the diploid cultivar. The length and width of stomata significantly increased, but stomatal density decreased in tetraploid cultivars. The PLB induction rates from the stem node explants of the tetraploid cultivars were significantly higher than those of diploid. However, the PLB proliferation of tetraploids was lower than that of the diploid. The mean number of plantlets regenerated from tetraploid PLBs was also lower than that of the diploid after 4 months of culture. Polysaccharide contents in stems, leaves, and roots of 6-month-old tetraploid plantlets were significantly higher than those of diploids. The polysaccharide content in the stem of ‘201-1-T1’ was 12.70%, which was a 2-fold increase compared with the diploid cultivar. Our results showed that chromosome doubling could be a viable way of improving D. officinale in biomass and polysaccharide production.