Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Ying Gao x
  • Refine by Access: All x
Clear All Modify Search
Free access

Ying Gao, Hao Liu, and Dong Pei

Monoclonal anti-indole acetic acid antibodies were used to monitor the temporal and spatial pattern of auxin during staminate flower differentiation in walnut (Juglans regia) cultivars Liaoning 1 and Liaoning 3. The relationship between morphological characteristics and histological structure was established. Seven stages of differentiation were recognized based on the visibility and color of the squama, bract, perianth, and rachis as follows: Stage 1, several bract primordia were present in the squama with catkins protruding from the squama as the only externally visible portion of the floret (Stage 1); the bract became externally visible, and the floret, perianth, and stamen primordia formed basipetally (Stage 2); the length of catkins were elongated, only bracts visible and getting brown (Stage 3); the bracts were brown and wrapped tightly, cellular specialization occurred to form a central core containing reproductive cells and tapetal cells that differentiated (Stage 4); the perianth became visible externally, reproductive cells and tapetal cells separated from the exterior layers of the anther wall (Stage 5); the anther walls were reduced to two cell layers (epidermis and endothecium) as the anthers became visible and matured (Stage 6); and the anther turned black, dehisced, and released its pollen grains (Stage 7). The histological differentiation of the flowers was related to auxin. The auxin signal was strongest in the shoot apical meristem (SAM) during bract primordia differentiation; thus, the SAM may be a site of auxin production. When the floral organs began centralized differentiation, auxin was distributed mainly in the differentiating tissues. Our findings indicate that a high level of auxin may strongly affect morphogenesis. Additionally, the tapetal and reproductive cells that arise during cellular specialization may be important for auxin production. The distribution of auxin was centralized in germ pores at the pollen grain surface, indicating that a high level of auxin induces pollen germination.

Free access

Ying Gao, Hao Liu, Ningguang Dong, and Dong Pei

We used anti-indole-3-acetic acid (IAA) monoclonal antibodies to monitor the temporal and spatial pattern of IAA during pistillate flower bud differentiation in the walnut (Juglans regia) cultivar Liaoning 1. Based on morphological changes, the process of pistillate flower bud differentiation was divided into five stages. The flower induction stage, which includes the early phase, midphase, and late phase, persisted from 25 Apr. to the end of May. The pedicel differentiation stage began on 5 June. The bract primordium stage began on 25 June and persisted through mid-March of the next year. Both the perianth and pistil differentiation stages persisted for nearly 2 weeks. During the floral induction period, little IAA was present in the shoot apical meristem (SAM); hence, the SAM may not always be a site of IAA production. IAA was obviously concentrated in cells of the first several layers of the SAM during pedicel primordium formation. High levels of IAA were also noted in the phyllome, young leaf tips, and vascular bundle of leaves and gemmae. This direct evidence indicates that no close relationship exists between IAA and physiological differentiation; instead, IAA may strongly affect morphogenesis. These findings comprise a first step toward elucidating the walnut flowering mechanism.

Free access

Qing-Hua Gao, Ye Zheng-Wen, Zheng Hong-Qing, and Zhang Xue-Ying

Full access

Zhuping Fan, Yike Gao, Ling Guo, Ying Cao, Rong Liu, and Qixiang Zhang

Bearded iris (Iris ×hybrida Hort.) is a large horticultural hybrid complex in the Iris genus, and the lack of understanding about its inheritance laws has seriously hindered the breeding process. From parental bearded iris ‘Indian Chief’ and ‘Sugar Blues’, four hybrid populations—including F1, F2, BC1P1, and BC1P2—were generated through hybridization. Fifteen key phenotypic traits, including plant height (PH), scape height (SH), length of fall (LF), width of fall (WF), length of standard (LS), width of standard (WS), and so on, were measured, and several genetic parameters (e.g., trait variation, heritability, trait correlation, distribution of flower color) were analyzed. The variation of phenotypic traits indicated that the F1 generation could produce larger flowers and a greater number of blooming stems than other generations, whereas backcrossing was beneficial at producing more flowers on one scape in the offspring of ‘Indian Chief’ and ‘Sugar Blues’. WF had the greatest broad-sense heritability (73.91%) among the 15 phenotypic traits, whereas the broad-sense heritability of SH was the lowest (2.06%). The correlation between a vegetative trait (PH) and a reproductive trait (WS) provided a path to early selection of germplasm. Furthermore, four important floral traits (LF, WF, LS, and WS) also correlated significantly to each other, thus simplifying the selection of larger flowers. Genes regulating fuchsia flower color were dominant over those for bluish purple flowers. Genetic effects of flower color in recurrent parents could be reinforced by backcrossing, thereby providing a potential way to modify flower color through hybridization.

Free access

Shuai-Ping Gao, Kang-Di Hu, Lan-Ying Hu, Yan-Hong Li, Yi Han, Hui-Li Wang, Kai Lv, Yong-Sheng Liu, and Hua Zhang

Hydrogen sulfide (H2S) was recently recognized as an endogenous gaseous molecule involved in seed germination, root organogenesis, abiotic stress tolerance, guard cell movement, and delay of senescence in plants. In the present study, we show that H2S participates in the regulation of postharvest ripening and senescence in fresh-cut kiwifruit, Actinidia deliciosa. Fumigation of fresh-cut kiwifruit with the H2S donor sodium hydrosulfide (NaHS) solution prolonged kiwifruit storage time and alleviated senescence and tissue softening in a dose-dependent manner at an optimal concentration of 1.0 mmol·L−1 NaHS. H2S treatment maintained higher levels of reducing sugars, soluble proteins, free amino acids, ascorbate, and chlorophyll and lowered carotenoid levels. H2S treatment also significantly decreased the contents of malondialdehyde (MDA), hydrogen peroxide (H2O2) and superoxide anion (O2 ) during fruit storage compared with water controls. Furthermore, the activities of guaiacol peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) were increased by H2S treatment, whereas the activity of lipoxygenase (LOX) was decreased compared with untreated controls. Taken together, these results suggest that H2S is involved in prolonging postharvest shelf life and plays an antioxidative role in fresh-cut kiwifruit.