Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Ying Fang x
Clear All Modify Search
Authors: , , , and

The calla lily (Zantedeschia hybrida) is a valued ornamental plant due to its unique shape and color variations. To determine the mechanisms responsible for color development in the calla lily spathe, we conducted a comparative transcriptomic analysis of the spathes of the black [Black Girl (B)], pink [Romantic (P)], and white [Ventura (W)] cultivars. The gene expression patterns in six spathe colors, including the preceding three colors as well as the amaranth [Promise (N)], red [Figo (F)], and yellow [Sun Club (Y)] cultivars were analyzed by real-time quantitative polymerase chain reaction (PCR). Transcriptomic analysis identified 25,165 differentially expressed genes. The transcription abundance and expression level of genes annotated as anthocyanidin reductase (ANR1, ANR2), basic-helix-loop-helix (bHLH1), and glutathione S-transferases (GST1) were significantly upregulated in B, and the expression of anthocyanidin synthase (ANS) was highest in B except for N. However, chalcone isomerase (CHI2) and dihydroflavonol 4-reductase (DFR1, DFR2) were expressed at significantly lower levels in P, W, and Y. Correlation analysis revealed that bHLH1 might act as a positive regulator of ANS expression, promoting anthocyanin synthesis. Moreover, GST1-encoded proteins may be related to the accumulation and transport of both anthocyanin and procyanidin in the calla lily spathe. It is speculated that the formation of the black spathe is related to the accumulation of anthocyanins and procyanidins. However, the low expression of CHI2, DFR1, and DFR2 may result in the inhibition of anthocyanin synthesis, which may lead to lightening of the spathe color. This preliminary study revealed the mechanism responsible for calla lily spathe color, identifying the key genes involved, thus providing effective gene resources and a theoretical basis for flower color molecular breeding.

Open Access

In floriculture design, “shaping” is the use of floral materials as media for expressing ideas. Common floriculture techniques include tying, pasting, winding, connecting, overlapping, and weaving. Shaping is also a key factor in the appeal of the final product. Therefore, this study recruited 149 university students to explore how their floriculture material-shaping skills are affected by factors such as creative personality traits, spatial abilities, and shaping creativity. Students were allowed to use three different leaf materials in their floriculture works: planar leaf, linear leaf, and amorphous leaf materials. Representative planar, linear, and amorphous floriculture materials used in the current study were yellow palm (Chrysalidocarpus lutescens), veitch’s screw pine (Pandanus baptistii), and tree fern (Asparagus virgatus), respectively. The average score for creativity in shaping floriculture material was (±sd) 3.26 ± 0.84 (range, 1.33–4.67). Comparisons of the three leaf materials showed that the score for shaping creativity was highest for the planar leaf material (3.70 ± 1.23), followed by the amorphous leaf material (3.18 ± 0.99) and the linear leaf material (2.91 ± 0.94). The chi-square test results indicated that creative personality traits affected the number of shaping skills used, and that spatial abilities and floriculture material-shaping creativity further enhanced skills in floriculture material-shaping. Suggestions for floriculture educators and practitioners are provided accordingly.

Open Access

Anthocyanins are major pigments responsible for the color of lily (Lilium sp.) flowers. Anthocyanin synthesis is part of the flavonoid metabolic pathway. Numerous transcription factors, including R2R3-MYBs, basic helix-loop-helix (bHLH), and tryptophan–aspartic acid repeat (also known as WD40 or WD repeat) proteins, known to regulate flavonoid biosynthesis have been identified in various plant species. However, there is limited information available on WD repeat proteins in lilies. In this study, we identified a WD repeat gene in the Oriental hybrid lily ‘Sorbonne’ (Lilium hybrid WD repeat, LhWDR). LhWDR contains no introns, and has a 1100–base pair open reading frame, encoding a putative protein of 370 amino acids. LhWDR was found to be localized in the cytoplasm of transgenic Arabidopsis thaliana root cells. Expression patterns of LhWDR in different organs and at different periods of lily tepal growth revealed that the expression levels of this gene are closely associated with anthocyanin accumulation. A yeast two-hybrid assay demonstrated that full-length LhWDR interacts with the 420 N-terminal amino acids of Lilium hybrid bHLH2. Interestingly, overexpression of LhWDR in A. thaliana led to an upregulation of the dihydroflavonol 4-reductase gene, which is an important structural gene downstream of the anthocyanin pathway. These results indicate that the WD repeat protein LhWDR might interact with a bHLH transcription factor to regulate anthocyanin biosynthesis.

Open Access

Lilium cultivars have a wide range of variation in floral scent phenotypes. Using gas chromatography–mass spectrometry (GC/MS) analyses of volatile emissions during the night, the floral scent compositions of 35 lily cultivars from seven different hybrid groups were studied. The results showed that there was a positive correlation between volatile emission levels and scent intensities. Nonscented lily cultivars belonging to Asiatic hybrids hardly emitted volatiles, light-scented Longiflorum × Asiatic hybrids emitted low levels of volatiles, and scented lily cultivars (belonging to Oriental, Trumpet, Longiflorum, Longiflorum × Oriental, and Oriental × Trumpet hybrids) emitted significantly high levels of volatiles. In general, the scent compositions of lily cultivars were similar within the same hybrid group, and the differences among hybrid groups reflect their pedigree. Monoterpenoids and benzenoids dominated the floral scents of most volatile-emitting lily cultivars, whereas monoterpenoids alone dominated the floral scents of some volatile-emitting lilies. Although various scent compounds were released from volatile-emitting lily cultivars, the dominant scent compounds were focused on three monoterpenoids [1.8-cineole, linalool, and (E)-β-ocimene] and one benzenoid (methyl benzoate). The scent traits of lily cultivars could be traced back to their parents.

Free access

Six types of light sources [0G, 20G, 40G, cool-white light-emitting diode (LED CW), cool-white fluorescent lamp (FLCW), and plant light fluorescent lamp (TLRA)] were used as the sole light sources to cultivate boston lettuce (Lactuca sativa L. cv. Ostinata). The photosynthetically active radiation (PAR) range was separated into five sections and the contributions of each spectral section on fresh weight (FW) were quantified. The results indicate that the conventional method of separating PAR into red, green, and blue at 100 nm apart was not accurate enough to clarify the contribution of different spectral sections to FW of boston lettuce. Green light (525–575 nm) at less than 30% of PAR is even more important than red (625–700 nm) and blue (400–475 nm) to plant growth. Yellow light (575–625 nm) has very little effect on plant growth.

Free access

Red leaf lettuce (Lactuca sativa) has high nutritional value and is frequently used in salads. In a plant factory with full electric lighting, if the spectrum is incorrect, then red leaf lettuce will have incomplete coloration. This study aimed to establish a light recipe for the mass production of red leaf lettuce using electric light sources in a plant factory by using indicators for quantitative assessment, including energy yield (EY) [grams of fresh weight (FW) harvested per kilowatt hour of electricity input for lighting], photon yield (PY) (grams of FW harvested per mole of photons delivered), anthocyanin yield per kilowatt hour (EYA), and anthocyanin yield per photon (PYA). First, the effects of four types of light quality on FW and anthocyanin content were examined. Then, two types of light quality, light-emitting diode with a red-to-blue photon ratio of 80:20 (R80:B20) and R20:B80, were selected for an experiment involving five treatments. An optimum light recipe (SR5SB1) including R80:B20 treatment during the early stage of cultivation (weeks 1 through 5 after sowing) followed by R20:B80 treatment during the final stage (week 6) was proposed. The SR5SB1 treatment led to FW, EYA, and PYA of 87.8 g/plant, 1.63 mg/kWh, and 0.57 mg·mol–1, respectively. This treatment resulted in the highest EYA and PYA, with 159% and 256% more anthocyanin productivity, respectively, compared with cool white treatment (with FW, EYA, and PYA of 65.8 g/plant, 0.63 mg/kWh, and 0.16 mg·mol–1, respectively). The proposed SR5SB1 light recipe enabled cultivation of red leaf lettuce with a balanced yield and anthocyanin production.

Free access

Hydrogen sulfide (H2S) has been proven to be a multifunctional signaling molecule in plants. In this study, we attempted to explore the effects of H2S on the climacteric fruit tomato during postharvest storage. H2S fumigation for 1 d was found to delay the peel color transition from green to red and decreased fruit firmness induced by ethylene. Further investigation showed that H2S fumigation downregulated the activities and gene expressions of cell wall–degrading enzymes pectin lyase (PL), polygalacturonase (PG), and cellulase. Furthermore, H2S fumigation downregulated the expression of ethylene biosynthesis genes SlACS2 and SlACS3. Ethylene treatment for 1 d was found to induce the expression of SlACO1, SlACO3, and SlACO4 genes, whereas the increase was significantly inhibited by H2S combined with ethylene. Furthermore, H2S decreased the transcript accumulation of ethylene receptor genes SlETR5 and SlETR6 and ethylene transcription factors SlCRF2 and SlERF2. The correlation analysis suggested that the fruit firmness was negatively correlated with ethylene biosynthesis and signaling pathway. The current study showed that exogenous H2S could inhibit the synthesis of endogenous ethylene and regulate ethylene signal transduction, thereby delaying fruit softening and the ripening process of tomato fruit during postharvest storage.

Free access