Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Ying Cheng x
Clear All Modify Search

The resurrection plant Selaginella pulvinata (Hook. & Grev.) Maxim is used as an ornamental and medicinal plant. It is also a good candidate for exploring the desiccation tolerance of resurrection plants. However, there is not an efficient propagation method for S. pulvinata. In the present study, we evaluated the establishment of in vitro propagation of S. pulvinata using frond tips as explants. The original shoot induction, adventitious shoot proliferation and plantlet growth media, and substrate type of plantlet acclimatization were investigated. The highest induction rate of original shoots (61.77 ± 5.17%) was obtained on half-strength (1/2) MS medium supplemented with 0.1 mg·L−1 N6-benzylaminopurine (BAP). The 1/2 MS with 1.0 mg·L−1 BAP was the most effective medium for the adventitious shoot proliferation. The quarter-strength (1/4) MS containing 0.1% (w/v) active charcoal (AC) was optimum for plantlets proliferated from adventitious shoots and plantlet growth. Approximately 98 plantlets could be obtained from one single original shoot via one-time shoot proliferation cultivation and plantlet cultivation. The acclimated plants on a 5:1 (v/v) mixture of peat and perlite had the highest survival rate (92.13 ± 1.67%). The acclimated plants maintained excellent resurrection ability.

Open Access

Alternaria alternata apple pathotype (previously A. mali) causes alternaria blotch disease of apple (Malus ×domestica), which may result in leaf spots and up to 70% premature leaf drop in serious cases. This disease is of worldwide importance but is most serious in eastern Asia (Japan, Korea, and China) and in parts of the United States. The excessive use of fungicides not only adds cost to apple growers, but also pollutes the environment. In this study, we characterized a 5-year F1 population from a cross of a resistant cultivar (Huacui) and a susceptible cultivar (Golden Delicious) consisting of 110 individuals along with 14-year-old parent trees (10 each). A field evaluation of disease severity was conducted in 2008 and 2009 under the natural conditions in Liaoning, China (lat. 40°37′ N, long. 120°44′ E). Based on the field data, 110 F1 plants were divided into five groups. Artificial inoculation was carried out both on the living trees and on the detached leaves in 2009 to ensure that A. alternata apple pathotype was the causative agent. Eighty primer pairs of simple sequence repeat (SSR) were screened against the four genomic DNA pools, respectively, from six highly susceptible F1 plants, six most resistant F1 plants, one tree of the seed parent, and the one tree of the pollen parent. One pair of primers (CH05g07) was shown to be linked to the DNA pools of susceptible F1 and the parent tree, but not to the DNA pools of resistant F1 and parent trees. This primer pair was then used to screen all individual 110 F1 progenies and two parent trees. The differentiation of 103 individuals (97.3%) with the marker matched the field disease resistance rating. This marker was further screened with 20 cultivars with known susceptibility or resistance to A. alternata apple pathotype and its linkage to susceptibility was validated. These results suggest that this marker can be used in marker-assisted selection for resistance/susceptibility to alternaria blotch disease in apple.

Free access

Phalaenopsis is currently the world’s number one potted flower crop. It is a slow-growing plant that responds slowly to nitrogen (N) fertilization and is noted for great resilience against N deficiency. Despite the great significance of N during the cultivation of Phalaenopsis, little has been studied on the uptake and partitioning of N in this crop. The stable isotope 15N was used as a tracer to investigate the uptake and partitioning of N and the roles of organs in sink and source relationship of N partitioning during different stages in Phalaenopsis. Fertilizer labeled with 15N was applied to Phalaenopsis Sogo Yukidian ‘V3’ during the vegetative growth stage on different parts of plants. Both leaves and roots were able to take up N. Nitrogen uptake efficiency of young roots was the highest, followed by old roots, whereas that of leaves was lowest. No difference of N uptake efficiency was found between the upper and lower leaf surfaces. Movement of fertilizer N to the leaves occurred as early as 0.5 day after fertilizer application to the roots. The partitioning of N depended on organ sink strength. During the vegetative growth stage, newly grown leaves and newly formed roots were major sinks. Sink strength of leaves decreased with the increase in leaf age. Stalks and flowers were major sinks during the reproductive growth stage. Mature leaves were a major location where N was stored and could serve as a N source during the reproductive growth stage and also for new leaf growth.

Free access

Quantitative trait loci (QTLs) identified so far in Brassica were mainly generated in the final stage of plant development, which did not apply to the exploitation of genetic effects that were expressed during a specific developmental stage. Thus, the objective of this study was to simultaneously identify unconditional and conditional QTL associated with plant height at various stages of nonheading Chinese cabbage. One hundred twelve doubled haploid (DH) lines developed from the cross between nonheading Chinese cabbage lines ‘SW-13’ and ‘SU-124’ were used for QTL analysis of plant height by the composite interval mapping method combined with mixed genetic model. The map we used for QTL analysis was an updated version of the first genetic map of nonheading Chinese cabbage with 48 additional markers to the same DH population. With data from 2 years, a total of 11 unconditional QTLs in six linkage groups and 23 conditional QTLs in eight linkage groups were identified for plant height. The results indicated that the number and type of QTLs and their genetic effects for plant height were different in a series of measuring stages. Each QTL can explain 7.92% to 28.25% of the total phenotypic variation. Two QTLs (ph8-4 and ph8-5) were identified to be associated with plant height using both unconditional and conditional mapping methods simultaneously in 2 years. These results demonstrated that it is highly effective for mapping QTL of developmental traits using the unconditional and conditional analysis methodology.

Free access

Apple blotch caused by Alternaria alternata apple pathotype is a severe disease of apple (Malus ×domestica Borkh) occurring throughout the world, especially in eastern Asia. Phenotypic and genetic information about resistance/susceptibility of apple germplasm to this disease will be extremely valuable for selecting and developing new disease resistant cultivars. In this study, 110 apple cultivars obtained from the USDA apple germplasm in Geneva, NY, were evaluated for their resistance/susceptibility to apple blotch by field surveys, and inoculation of detached leaves with a suspension of germinated conidia of A. alternata apple pathotype. Disease incidence were different among the cultivars and categorized into resistant (R), moderately resistant (MR), or susceptible (S). Two molecular markers, S428, a random amplified polymorphic DNA (RAPD) marker associated with disease resistance, and a simple sequence repeat (SSR or microsatellite) marker CH05g07, linked to susceptibility were used to correlate the phenotypes expressed in field surveys and laboratory inoculations. The detection using either the S428 marker or the CH05g07 marker in 50 common breeding cultivars was consistent with R or S traits except for ‘Bisbee’ and ‘Priscilla’. These two cultivars were MR to apple blotch through phenotyping. However, SSR markers were detected, but RAPD markers were not and therefore were considered susceptible. Combined with the record of resistance to fire blight from Germplasm Resources Information Network (GRIN), ‘Dayton’, ‘Mildew Immune Seedling’, ‘Puregold’, and ‘Pumpkin Sweet’ were highly resistant to both diseases and considered as the best choices of parents for stacking resistance to multiple diseases in breeding program.

Free access

Understanding the irregular yield pattern of greenhouse-grown sweet peppers (Capsicum annuum L.) has been a challenge to researchers and greenhouse producers. Experimental data from 4 years, each consisting of 26 production weeks, were used in a time series analysis, neural network (NN) modeling, and regression analysis. Time series analysis revealed that weekly yield was influenced by yields from the preceding 2 weeks (Yd_1 and Yd_2), cumulative light 2 and 4 weeks prior (L_2 and L_4), and average 24-h air temperature 5 weeks prior (T_5). Cumulative light (L) data were transformed into kL by dividing by 1000 for subsequent NN modeling and regression analysis. These five inputs were used to establish a NN model, which illustrated the positive influence of Yd_1, kL_4, and kL_2 and negative influence of Yd_2 and T_5. Again, these five inputs were used in a regression analysis illustrating the positive influence of Yd_1 and the negative influence of Yd_2. Each input was further modified to include its squared value before entering the regression, which resulted in significant inputs of Yd_1, Yd_1 squared, and Yd_2 squared. Among these three analyses, the most consistent parameters were Yd_1 and Yd_2, confirming that the irregular yield pattern of greenhouse-grown peppers is of a biological nature. Environmental factors kL_2, kL_4, and T_5 did not show a consistent effect on yield in all three analyses, indicating yield pattern is less influenced by growing environment.

Free access

Agave species are economically important plants in tropical and subtropical desert ecosystems as ornamentals as well as potential bioenergy crops. However, their relatively long life cycles and the current lack of biotechnology tools hinder their breeding. In this study, an efficient system for micropropagation was developed for Agave americana L. by using basal stems as explants and grown on a modified Murashige and Skoog medium (MSI) or a 1/2 MSI medium supplemented with various concentrations of 6-benzylaminopurine (BA) for shoot proliferation. The highest number of shoots (18.5 shoots/explant) from basal stems was obtained on MSI supplemented with 13.32 μM BA. An efficient shoot regeneration system was also developed from leaf tissues. Combinations of auxin with cytokinin, basal media, and leaf regions were optimized for shoot induction. Adventitious shoot formation from leaf segments was induced and proliferated with combination ranging of 0.54 to 2.68 μM [α-naphthaleneacetic acid (NAA)] with 8.88 to 13.32 μM (BA), and the maximum frequency (≈69%) was obtained with 2.68 μM NAA plus 13.32 μM BA. MSI medium and the basal segment of leaf affected shoot induction. The highest rooting frequency and mean number of shoots occurred in 1/2 MSI containing with 4.92 μM indole-3-butyric acid (IBA) alone (90%, 3.4) or 1.48 μM IBA plus 1.61 μM NAA (92%, 5.2). Survival of in vitro plantlets after transfer and acclimatization to ex vitro conditions was 87%. This is the first complete protocol for micropropagation of A. americana.

Free access