Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Yin-ming Li x
Clear All Modify Search

In Pelargonium, the plastid mutation in three independent cell layers L1, L2, and L3, can produce plastid chimeras with visible shoot colour difference such as GWG (green-white-green) and GGW (green-green-white). Chimera can be used to trace the relationship between the cell layers of different genotypes during shoot development and the effect of the mutated genes on shoot development. In this study, we have obtained different adventitious shoots with GGG, GWG, GGW, and WWW combinations of cell layers through tissue culture of petioles and internodes from GGW and GWG chimeras of Pelargonium zonale `Mrs Pollock'. Much higher percentage (14.9%) of chimeral adventitious shoots was obtained from GGW tissues than from GWG tissues (4.2%). Of the 10.8% chimeral adventitious shoots regenerated in this experiment, 8.6% are different from the original type of explants. This result indicated that cells at least in both L2 and L3 of the explants were involved in the regeneration of the adventitious shoots. The number of shoot types regenerated is likely dependent on the number and the type of cells that were in direct contact with the culture medium. It is suggested that the mixed cells can be used to produce the chimera by tissue culture. Three possible ways to form the chimeras in vitro culture were discussed. Chemical names used: TDZ =1-phenyl-3-(1,2,3-thiadiazol-5-yl)urea (Thidiazuron); IAA = Indole-3-acetic acid; PVP = polyvinylpyrrolidone.

Free access
Authors: and

Sixty highly homozygous tomato (Lycopersicon esculentum Mill.) strains, some selected from previous studies and some collected from known low-Ca regions, were screened under a low-Ca culture system (10 mg of Ca per plant). Four strains were selected to represent the extremes for Ca efficiency and used as parents to create a series of F1, F2, and backcross generations for inheritance studies of Ca use under low-Ca stress. Based on total plant dry weight, additive and dominance gene effects were most important for the efficiency of Ca use. Maternal control of efficiency in Ca use was not observed. Estimates of broad-sense heritability ranged from 63% to 79% for total play dry weight. Narrow sense heritabilities, determined in only two of the families, were 47% to 49$ and 68% to 75%.

Free access

Cold stress is one of the most important environmental factors affecting crop growth and agricultural production. Induced changes of gene expression and metabolism are critical for plants responding and acclimating to cold stress. Banana (Musa sp.) is one of the most important food crops in the tropical and subtropical countries of the world. Banana, which originated from tropical regions, is sensitive to cold, which can result in serious losses in commercial banana production. To investigate the response of the banana to cold stress conditions, changes in protein expression were analyzed using a comparative proteomics approach. ‘Brazil’ banana (Musa acuminata AAA group) is a common banana cultivar in southern China. ‘Brazil’ banana plantlets were exposed to 5 °C for 24 hours and then total crude protein was extracted from treatment and control leaves by phenol extraction, separated with two-dimensional gel electrophoresis, and subsequently identified by mass spectrometry (MS). Out of the more than 400 protein spots reproducibly detected, only 41 protein spots exhibited a change in intensity by at least 2-fold, with 26 proteins increasing and 15 proteins decreasing expression. Of these, 28 differentially expressed proteins were identified by MS. The identified proteins, including well-known and novel cold-responsive proteins, are involved in several cellular processes, including antioxidation and antipathogen, photosynthesis, chaperones, protein synthesis, signal transduction, energy metabolism, and other cellular functions. Proteins related to antioxidation, pathogen resistance, molecular chaperones, and energy metabolism were up-regulated, and proteins related to ethylene synthesis, protein synthesis, and epigenetic modification were down-regulated in response to cold temperature treatment. The banana plantlets incubated at cold temperatures demonstrated major changes in increased reactive oxygen species (ROS) scavenging, defense against diseases, and energy supply. Increased antioxidation capability in banana was also discovered in plantain, which has greater cold tolerance than banana in response to cold stress conditions. Therefore, we hypothesized that an increased antioxidation ability could be a common characteristic of banana and plantain in response to cold stress conditions. These findings may provide a better understanding of the physiological processes of banana in response to cold stress conditions.

Free access