Search Results

You are looking at 1 - 10 of 52 items for

  • Author or Editor: Yin-Tung Wang x
Clear All Modify Search
Free access

Yin-Tung Wang*

It not clear how a prolonged period of cool days and warm nights affect Phalaenopsis hybrids which take up CO2 mainly at night. The `Lava Glow' clone of the hybrid Doritaenopsis (Phal. Buddha's Treasure × Doritis pulcherrima) 15 cm in leaf span were subjected to day/night (12 h each daily) temperatures of 30/25, 25/30, 25/20, or 20/25 °C at 170 umol.m-2 .s-1 PPF. After nine months, plants under the higher average daily temperature (ADT) produced more leaves. Those grown at 30/25 °C had the largest leaf span and total length of the new leaves. Plants under 30/25, 25/30, 25/20, or 20/25 °C had 5.0, 4.7, 3.6, and 2.8 new leaves and 72, 61, 42, and 28 cm in total new leaf length, respectively. Cool days and warm nights resulted in smaller leaf span and reduced leaf growth, particularly at 20/25 than at 25/30 °C. Within a given ADT, cooler days resulted in shorter leaves. Leaves produced by plants at the lower ADT had a smaller length to width ratio and the more desirable oval shape. The most striking effect of 20/25 °C was that 14 out of 15 plants bloomed, whereas only 5 plants under 25/20 °C and none in the 30/25 or 25/30 °C treatment flowered. In a second experiment, 18-22 cm plants were subjected to 30/20, 20/30, 25/15, or 15/25 °C. After 29 weeks, similar results were obtained. All plants under 15/25 °C bloomed, whereas none in the other treatments produced flowers. Long-term exposure to 15/25 °C resulted in slow leaf production and undesirable small leaves. These results suggest that, with day temperatures in the 20-15 °C range, nights 10-5 °C warmer are not desirable for rapid vegetative growth. However, cool days and warm nights may be used to effectively induce the flowering process.

Free access

Yin-Tung Wang

Seedling Phalaenopsis (P. Taisuco Eagle × P. Taisuco Rose) plants with an 8- to 10-cm leaf span were grown in 10-cm pots filled with a medium consisting of 70% fine fir bark and 30% peatmoss (by volume). Plants were given (in N–P2O5–K2O) 10–30–20, 15–10–30, 15–20–25, 20–5–19, 20–10–20, or 20–20–20 fertilizers at the 100 or 200 mg N/liter rate. Pots were leached with water following every two fertigations. After 7 months, leaf span, leaf size, total leaf area, and fresh weight were not affected by fertilizer type. The differences in leaf numbers were small. The higher rate of fertilizer resulted in plants with wider leaf span (32.8 vs. 28.5 cm), more (5.5 vs. 4.8), larger (103 vs. 89 cm2) leaves, and greater total leaf area (355 vs. 275 cm2) than did the lower rate. In another experiment, similar plants with a leaf span of 15 to 18 cm were grown in 10-cm pots with 100% fine fir bark or a mixture of 80% fine fir bark and 20% peatmoss. They were fertigated with water having an EC - 0.05, 0.40, 0.75, 1.10, or 1.40 dS·m–1 containing 1 g·liter–1 20–20–20 fertilizer three times and then drenched with their respective water containing 0.6 g·liter–1 Ca NO3)2·4H2O. After 11 months, water salinity did not affect the date of spiking. Plants receiving water with EC = 1.10 dS·m–1 had more leaves and spikes than other treatments. Plants in the bark/peatmoss mix began spiking earlier, had more leaves (6.7 vs. 5.7), and more inflorescences (1.9 vs. 1.5) than those in 100% bark. There was no salinity x medium interaction in all the parameters recorded.

Free access

Yin-Tung Wang

Young, bare-root plants (three leaves, 15 cm in leaf spread) from a vegetatively propagated clone of Phalaenopsis Blume x Taisuco Kochdian were imported in late May and planted in a mix consisting of three parts medium-grade Douglas fir bark and one part each of perlite and coarse peat (by volume) or in pure Chilean sphagnum moss. All plants were given 221 N, 124 P, 515 K, 100 Ca, and 50 Mg (all in mg·L−1) when being irrigated. The total N varied from 0%, 25%, 50%, 75%, to 100% NO3-N with the balance being NH4-N. Plants were fertigated when the substrate became dry. For both substrates, as the percentage of NO3-N increased, plants produced slightly fewer leaves. Regardless of the NO3-N to NH4-N ratio, plants grown in moss produced one extra leaf than those planted in the bark mix during an 8-month period. There was a tendency of increasing top leaf length and width as well as the whole-plant leaf spread as NO3-N increased from 0% to 100% in either substrate. Plants receiving 50% or more NO3-N in either substrate spiked and flowered 2 weeks earlier than those given 25% or 0% NO3-N. When grown in the bark mix, flower count, flower diameter, and inflorescence length all increased as NO3-N increased from 0% to 75%. Flower stem (inflorescence, 5 cm from the base) became progressively thicker as NO3-N increased from 0% to 100%. Only two among the 24 plants grown in moss and receiving 100% NH4-N bloomed. These results suggest that Phalaenopsis does not grow well with 100% NH4-N and must be provided with NO3-N at no less than 50%, preferably 75%, of the total N for improved growth and flowering.

Free access

Yin-Tung Wang

Aloe barbadensis (Aloe vera) plants remain in production fields for several years, with their lower leaves harvested periodically. A long-term experiment was initiated in November 1993 to determine the effects of fertilization and severeness of harvest on leaf yield. Plants were grown in large pots with or without monthly applications of a 20N–8.6P–16.6K soluble fertilizer from March to October. Beginning in June 1994, the lower leaves were harvested quarterly to have 18, 15, or 12 leaves remaining. Fertilization doubled the number of leaves harvested and tripled the total yield over a 2-year period. The lower leaves on the nonfertilized plants, particularly on plants with 18 leaves remaining, sometimes became dry or partially dry at harvest. The initial quarterly yield and cumulated yield were higher in plants with 12 leaves remaining; however, this trend disappeared over time. The fertilized plants produced an average of 10 kg per plant, while the nonfertilized plants produced only 3.2 kg per plant annually. At several harvests, plants with 18 leaves remaining had higher % dry mass in the inner semi-translucent tissue than those having 12 leaves. Leaves of nonfertilized plants had high % dry mass in the inner leaf tissue when harvested in June and September 1995. Plants with 12 leaves remaining can become unstable and the tops break off in gusty wind.

Free access

Yin-Tung Wang

Bare-root, vegetatively propagated plants (average 15-cm leaf spread) of a white-flowered Phalaenopsis Taisuco Kochdian clone were imported in late May and planted either in a mix consisting of three parts medium-grade douglas fir bark and one part each of perlite and coarse canadian sphagnum peat (by volume) or in chilean sphagnum moss. All plants were given 200 mg·L−1 each of nitrogen and phosphorus, 100 mg·L−1 calcium, and 50 mg·L−1 magnesium at each irrigation with 0, 50, 100, 200, 300, 400, or 500 mg·L−1 potassium (K). After 8 months, K concentration did not alter the number of new leaves on plants in either medium. Plants grown in moss produced four to five leaves, whereas those planted in the bark mix produced only two to three leaves. K concentration did not affect the length of the uppermost mature leaves when grown in the bark mix. However, in moss, plants had increasingly longer and wider top leaves as K concentration increased. The lower leaves on plants in the bark mix lacking or receiving 50 mg·L−1 K showed symptoms of yellowing, irregular purple spots, and necrosis after spiking and flowering, respectively. Yellowing and necrosis started from the leaf tip or margin and progressed basipetally. Symptoms became more severe during flower stem development and flowering. All of the plants lacking K were dead by the end of flowering. Leaf death originated from the lowest leaf and advanced to the upper leaves. K at 50 mg·L−1 greatly reduced and 100 mg·L−1 completely alleviated the symptoms of K deficiency at the time of flowering. However, by the end of flowering, plants receiving 50 or 100 mg·L−1 K had yellowing on one or two lower leaves. Plants grown in moss and lacking K showed limited signs of K deficiency. All plants in the bark mix bloomed, whereas none in sphagnum moss receiving 0 mg·L−1 K produced flowers. For both media, as K concentration increased, flower count and diameter increased. Flower stems on plants in either medium became longer and thicker with increasing K concentration. To obtain top-quality Phalaenopsis with the greatest leaf length, highest flower count, largest flowers, and longest inflorescences, it is recommended that 300 mg·L−1 K be applied under high N and high P conditions regardless of the medium.

Free access

Yin-Tung Wang

This is the first report on how leaf harvest techniques and sulfur may affect leaf initiation and yield of Aloe barbadensis Miller (syn. Aloe vera L.). Two long-term experiments were conducted to determine the effects of supplemental mineral nutrients, severity of harvest, and sulfur application on leaf yield of this species. Plants were each grown in a 38-L pot with or without monthly applications of a 20N–8.6P–16.6K water-soluble fertilizer. In the first experiment, beginning in June 1994 (7 months after initiation), the lower leaves were harvested every 3 months with 12, 15, or 18 leaves remaining per plant. All plants were harvested to 12 leaves at the final harvest in Mar. 1997. Fertilized plants that were harvested to 12 leaves produced 81 leaves each during the 3-year period, whereas those harvested to 15 or 18 leaves each produced 76 leaves. In contrast, each of the nonfertilized plants produced 36 leaves. Fertilization tripled the cumulative weight of harvested leaves over a 3-year period. The initial quarterly and cumulative leaf weights were higher in plants harvested to 12 leaves than those harvested to 15 or 18 leaves. However, this difference diminished and disappeared over time. Fertilized plants harvested to 18 or 15 leaves yielded over 10.8 kg annually, whereas nonfertilized plants with 12 leaves produced an average of 3.5 kg leaves per plant. In the second experiment (with or without fertilizer and micronutrient and 0, 25, 50, or 100 g/pot of powdered sulfur per year), plants responded similarly to fertilization as they did in the first experiment. The added micronutrients (25 g/pot per year) had no effect on plant growth. The highest rate of sulfur resulted in few leaves being harvested and reduced cumulative leaf weight in fertilized plants, but did not affect the number of harvestable leaves or their total weight in nonfertilized plants. Soil pH declined from 7.6 to 4.6 as a result of fertilization regardless of the amount of sulfur being applied. In both experiments, plants that received fertilizer had slight cold injury on the abaxial side of some south-facing leaves. The results suggest the importance of fertilizer application to enhance leaf initiation rate. Plants should be harvested to leave no fewer than 15 leaves, preferably 18, on the plant to maintain high leaf yield.

Free access

Yin-Tung Wang

Bare-root Phalaenopsis Blume orchids are frequently shipped by air freight intercontinentally. It was not known how temperature and duration in shipping affect their subsequent performance during greenhouse production. On 15 Sept., container-grown plants of vegetatively propagated Phalaenopsis (Atien Kaala Group) ‘TSC 22’ were removed from pots and individually weighed immediately. These bare-root plants were packed in cartons with shredded newspaper and placed in growth chambers at 15, 20, 25, or 30 °C in darkness. After 4, 7, and 14 days, one-third of the plants were removed from each temperature treatment, weighed, planted in pots, and then placed in a greenhouse. Weight loss increased with increasing air temperature and duration in storage. Chilling injury (CI) was more severe at 15 °C than 20 °C storage temperature and was progressively more severe as storage duration increased from 4 to 14 days. Plants had no sign of CI at 25 °C or 30 °C regardless of storage duration. Leaf loss was most severe on plants stored at 15 °C for 7 days (three leaves) or 14 days (five leaves) or at 30 °C for 14 days (three leaves). Storing plants 14 days or less between 15 °C and 25 °C did not affect the time of spiking (emergence of the flowering shoot), but at 30 °C, spiking was delayed by 5 to 8 days regardless of the duration. Storage resulted in reduced flower count, but not flower size, regardless of temperature and duration. In a second experiment, potted Phalaenopsis plants of the same clone were thermal-acclimatized in growth chambers in mid-September for 10 days at 25 °C followed by another 10 days at 20 °C before being stored in pots or bare-root at 15 °C, 20 °C, 25 °C, or 30 °C for 10 days. Thermal acclimatizing at 25 °C and 20 °C reduced the severity of CI and leaf loss after being stored for 10 days at 15 °C either bare-root or in pots, but did not reduce leaf loss resulting from heat at 30 °C. Repotting or storing bare-root plants did not affect spiking or flowering date under otherwise similar conditions. Nondisturbed plants in pots stored at temperatures between 20 °C and 30 °C for 10 d had higher flower count as compared with bare-root plants that were similarly stored. Spiking of nonacclimatized, bare-root plants was delayed after 10 days at either storage temperature, whereas flowering was delayed by 15 °C and 30 °C only. Bare-root Phalaenopsis orchids should be shipped near 25 °C during the warm period of the year and between 25 °C and 15 °C in the late fall through early spring to avoid CI or heat stress.

Free access

Yin-Tung Wang

Leaf blades, axillary buds, shoot tips, green bark, suberized bark, or the whole plant of container-grown Hibiscus rosa-sinensis L. cv. Jane Cowl were treated with uniconazole. Applying uniconazole (50 mg·liter-1) to axillary buds or the green bark below a bud immediately after pruning limited elongation of the first three internodes. Length of the fourth internode was unaffected, regardless of the site of uniconazole application. When used on plants with 24-day-old shoots, uniconazole (40 mg·liter -1) applied to the whole plant provided the only satisfactory height control. Leaf size was reduced by nearly 50%, with a concomitant increase (12%) in fresh weight per unit area. GA3 (50 mg·liter-1, was more effective in promoting elongation of shoots previously retarded with a drench application of uniconazole (0.1 mg/2.6-liter pot) when applied to the whole shoot, leaf blades, or shoot tip. Application of GA, only to the stein surface, whether old or young, did not effectively encourage the growth of shoots of plants previously treated with uniconazole. Chemical names used: (E)-1-(p-chlorophenyl) -4,4-dimethyl-2-(1,2,4-triazole-1-yl)-1-penton-3-ol (uniconazole); analogue of (1α,2β,4 α,4bβ,10β)-2,4a,7-trihydroxy-1-methyl-8-methylenegibb-3-ene-1,10 dicarboxylic acid 1,4a-lactone (GA3).

Free access

Yin-Tung Wang

The rate of full hydration for several hydrophilic polymers differed greatly (starch-based polymers > propenoate-propenoamid copolymer > polyacrylamide). Maximum water retention in distilled water varied from over 500 g to 57 g of water per of different dry materials. All polymers retained less water in the presence of metal ions or fertilizers, with substances releasing Fe+2 being the most detrimental. Potting media containing a polyacrylamide polymer reached maximum water retention after 6 irrigations, while those with Micromax (micronutrient source) required 10 irrigations to reach maximum hydration. The water-holding capacities of the media declined after repeated fertilization. Medium bulk density, total watet retention, and water retention per unit volume of medium were increased by the incorporation of the polymer, regardless of the presence of Micromax. Non-capillary porosity in medium amended with Micromax progressively decreased as the amount of the polymer increased, but remained unchanged in medium without Micromax. Repeated wet-dry cycles resulted in decreased water retention and increased non-capillary pore space of the media.

Free access

Yin-Tung Wang

Hibiscus rosa-sinensis `Jane Cowl' were pruned several weeks after receiving 0.1 mg/pot uniconazole soil drenches to retard the growth. Plants then received foliar sprays of GA3 (50 ppm), KIBA (200 ppm), or PBA (200 ppm) immediately after pruning or when the lateral shoots had three leaves. Application of the above growth regulators immediately after pruning had no effect on plant growth. When treatments were delayed until the three-leaf stage, GA3 completely restored leaf production rate and partially restored shoot elongation and pedicel length. GA3 also increased leaf area, and the leaf specific weight was similar to leaves on plants not receiving uniconazole. GA3 increased flower production 175% and 65% more than plants treated with uniconazole and the untreated plants, respectively. KIBA and PBA had no effect on altering the growth of uniconazole-treated plants. Foliar application of a combination of GA3, KIBA and PBA at the three-leaf stage had an effect similar to that of GA3 alone. However, the effect of GA3 on growth appeared to be transient and repeated application may be required to maintain the restored growth of uniconazole-treated plants.