Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Yiming Zhang x
Clear All Modify Search

To improve plant quality and fertilizing efficiency, we conducted a study to elucidate the effects of nitrogen (N), phosphorous (P), and potassium (K) fertilizers on the growth, nutrient accumulation, and quality of Lagerstroemia indica plants grown in containers and determine the optimal fertilization levels. Both single-factor and multifactor experiments involving N, P, K fertilizers were designed. Integrated with the plant growth, physiological traits, nutrient levels, and other indices, we used a membership function analysis to comprehensively evaluate plant quality. During the single-factor experiments, the best levels of the single fertilizers applied were 8 g/plant N, 2 g/plant P, and 4 g/plant K. We also found that, within a certain range, N, P, and K fertilizers promoted vegetative growth, increased the chlorophyll, soluble sugar, and soluble protein concentrations, and enhanced nutrient accumulation of L. indica. To avoid the wasting of fertilizers and promote plant quality, the optimal application levels were calculated using a regression analysis. The suggested N, P, and K applications were 6.89 g/plant, 1.97 g/plant, and 3.33 g/plant, respectively. Our results revealed that N, P, and K effect the performance of L. indica container plants, which paves the way for developing reliable and precise fertilizing techniques for growing L. indica.

Open Access

Water deficit is a major limiting factor for grass culture in many regions with physiological mechanisms of tolerance not yet well understood. Antioxidant isozymes and hormones may play important roles in plant tolerance to water deficit. This study was designed to investigate antioxidant enzymes, isozymes, abscisic acid (ABA), and indole-3-acetic acid (IAA) responses to deficit irrigation in two perennial ryegrass (Lolium perenne L.) cultivars contrasting in drought tolerance. The plants were subjected to well-watered {100% container capacity, 34.4% ± 0.21% volumetric moisture content (VWC), or deficit irrigation [30% evapotranspiration (ET) replacement; 28.6% ± 0.15% to 7.5% ± 0.12% VWC]} conditions for up to 8 days and rewatering for 4 days for recovery in growth chambers. Deficit irrigation increased leaf malondialdehyde (MDA) content in both cultivars, but drought-tolerant Manhattan-5 exhibited lower levels relative to drought-sensitive Silver Dollar. Superoxide dismutase (SOD) activity declined and then increased during water-deficit treatment. ‘Manhattan-5’ had higher SOD activity and greater abundance of SOD1 isozyme than ‘Silver Dollar’ under water deficit. Deficit irrigation increased catalase (CAT) and ascorbate peroxidase (APX) activity in ‘Manhattan-5’, but not in ‘Silver Dollar’. ‘Manhattan-5’ had higher CAT, APX, and peroxidase (POD) activity than ‘Silver Dollar’ during water limitation. Deficit irrigation increased mRNA accumulation of cytosolic cupper/zinc SOD (Cyt Cu/Zn SOD), whereas gene expression of manganese SOD (Mn SOD) and peroxisome APX (pAPX) were not significantly altered in response to deficit irrigation. No differences in Cyt Cu/Zn SOD, Mn SOD, and pAPX gene expression were found between the two cultivars under deficit irrigation. Water limitation increased leaf ABA and IAA contents in both cultivars, with Silver Dollar having a higher ABA content than Manhattan-5. Change in ABA level may regulate stomatal opening and oxidative stress, which may trigger antioxidant defense responses. These results indicate that accumulation of antioxidant enzymes and ABA are associated with perennial ryegrass drought tolerance. Activity and isozyme assays of key antioxidant enzymes under soil moisture limitation can be a practical screening approach to improve perennial ryegrass drought tolerance and quality.

Free access