Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Yi He x
Clear All Modify Search
Free access

Hazel Y. Wetzstein, Elizabeth A. Richardson and Yi He

Propiconazole, a triazole fungicide, has been reported to inhibit leaf expansion in pecan [Carya illinoensis (Wangenh.) K. Koch] trees when applied under field conditions. This study was conducted to determine the effect of propiconazole on pecan leaf morphology and structure using light and transmission electron microscopy. Mature pecan trees were sprayed once or three times per week from budbreak to pollen maturity. Fungicide sprays resulted in significantly reduced leaf area. Compared to controls, leaves from propiconazole-treated shoots had alterations in cell arrangement characterized by more tightly packed palisade parenchyma cells with fewer intercellular spaces; neither leaf thickness nor palisade or spongy layer thickness were affected. Propiconazole caused modifications in the chloroplasts, with a tendency for internal membranes to be less defined, and for thylakiods to exhibit less stacking. The extent of structural changes was related to fungicide dosage. Results show that propiconazole applications during leaf development can inhibit leaf expansion and modify cellular organization of the mesophyll cells. Chemical name used: 1-[[2-(2,4-dichlorophenyl)-4-propyl-1,3-dioxolan-2-yl] methyl]-1H-1,2,4-triazole (propiconazole).

Free access

Yi He, Hazel Y. Wetzstein and Barrv A. Palevitz

Fungicides have been shown to negatively affect pollen germination, tube growth, and fruit set in important crops. However, little is known regarding possible modes of action in higher plant cells. To address this, the effects of propiconazole or benomyl on pollen germination and tube growth were evaluated in Tradescantia virginiana using light microscopy and immunocytochemistry. Concentrations were selected at levels that had inhibitory effects, but did not totally arrest germination and tube elongation, i.e., propiconazole and benomyl were added at 0, 102, 136, or 170 μl·liter–1, and 0, 480, 600, or 720 mg·liter–1, respectively. Both fungicides inhibited germination, cytoplasmic streaming, tube elongation, and induced abnormal tube morphology and cytoskeletal distribution. Propiconazole-treated tubes had weaker microfilament signals, with amorphous staining. Microtubule (Mt) distribution was severely affected. In benomyl-treated tubes, Mts were fewer in number, fragmented, sinuous, and increasingly disorganized. Possible mechanism(s) will be discussed.

Free access

Kai Zhao, Feng Zhang, Yi Yang, Yue Ma, Yuexue Liu, He Li, Hongyan Dai and Zhihong Zhang

GA20-oxidase (GA20-ox) is a key enzyme involved in the biosynthesis of gibberellic acid (GA). To investigate its role in plant growth and development, we suppressed MdGA20-ox gene expression in apple (Malus domestica cv. Hanfu) plants by RNA interference (RNAi). After 20 weeks of growth in the greenhouse, significant phenotype differences were observed between transgenic lines and the nontransgenic control. Suppression of MdGA20-ox gene expression resulted in lower plant height, shorter internode length, and higher number of nodes compared with the nontransgenic control. The expression of MdGA20-ox in transgenic plants was significantly suppressed, and the active GA content in transgenic lines was lower than that in the nontransgenic control. These results demonstrated that the MdGA20-ox gene plays an important role in vegetative growth, and therefore it is possible to develop dwarfed or compact scion apple cultivars by MdGA20-ox gene silencing.

Free access

Shanshan Seng, Jian Wu, Jiahui Liang, Fengqin Zhang, Qiuyan Yang, Junna He and Mingfang Yi

Starch accumulation is important during com development. ADP-glucose pyrophosphorylase (AGPase) is the rate-limiting enzyme in starch synthesis. AGPL is the large subunit of AGPase. Here, we isolated and characterized the large subunit of AGPase gene GhAGPL1 in gladiolus (Gladiolus hybridus). GhAGPL1 was highly expressed in sink organs (cormels and corms). The expression of GhAGPL1 was induced by glucose, sucrose, and mannitol, and it was repressed by abscisic acid (ABA). Overexpression of GhAGPL1 in the arabidopsis (Arabidopsis thaliana) apl1 mutant resulted in complementation of AGPase activity and thus starch synthesis. Silencing GhAGPL1 in gladiolus decreased the transcript level of GhAGPL1 and GhSus, and resulted in the reduction of AGPase activity and starch content in gladiolus corm and cormel. Meanwhile, sucrose content was higher in GhAGPL1-silenced corm. Surprisingly, silencing GhAGPL1 in gladiolus produced smaller corms and fewer number of cormels. Overall, GhAGPL1 contributed to the quality and quantity of gladiolus corms and cormels.

Free access

Xiaoling He, Susan C. Miyasaka, Yi Zou, Maureen M.M. Fitch and Yun J. Zhu

Genetic engineering has the potential to improve disease resistance in taro [Colocasia esculenta (L.) Schott]. To develop a method to produce highly regenerable calluses of taro, more than 40 combinations of Murashige and Skoog (MS) media at full- or half-strength with varying concentrations of auxin [α-naphthaleneacetic acid (NAA) or 2, 4-dichlorophenoxyacetic acid (2, 4-D)], cytokinin [benzyladenine (BA) or kinetin], and taro extract were tested for callus initiation and plant regeneration. The best combination, MS medium with 2 mg·L−1 BA and 1 mg·L−1 NAA (M5 medium), was used to produce regenerable calluses from taro cv. Bun Long initiated from shoot tip explants. After 8 weeks of growth, multiple shoots from these calluses could be induced on MS medium with 4 mg·L−1 BA (M15 medium). The rice chitinase gene (ricchi11) along with the neomycin phosphotransferase (npt II) selectable marker and β-glucuronidase (gus) genes were introduced into these taro calluses through particle bombardment. Transformed calluses were selected on M5 medium containing 50 mg·L−1 geneticin (G418). Histochemical assays for beta-glucuronidase (GUS), polymerase chain reaction (PCR), reverse transcription–PCR, and Southern blot analyses confirmed the presence, integration, and expression of the rice chitinase gene in one transgenic line (efficiency less than 0.1%). Growth and morphology of the transgenic plants appeared normal and similar to non-transformed controls. In pathogenicity tests, the transgenic line exhibited improved resistance to the fungal pathogen, Sclerotium rolfsii, but not to the oomycete pathogen, Phytophthora colocasiae.

Free access

Zhi Quan, Bin Huang, Caiyan Lu, Yi Shi, Yanhong Cao, Yongzhuang Wang, Chuanrui He, Guangyu Chi, Jian Ma and Xin Chen

Much nitrogen (N) is lost in high-input protected cropping systems mainly via leaching of not only nitrate-N but also extractable organic N (EON), but the role of EON in this process is poorly appreciated. A consecutive 3-year plot experiment was conducted to investigate the impact of co-application of manures with chemical N fertilizer on N accumulation and loss in a greenhouse soil rotationally planted with cucumber or tomato and lettuce. Application of manures significantly enhanced the average contents and stocks of NO3 -N, EON, and total N (TN) in 0- to 60-cm soil layer, although EON accumulated within growing season, while NO3 -N accumulated with fluctuation, and TN accumulated gradually throughout the 3-year experiment. With application rate at 120 or 180 t dry manures per hectare per 3 years, the corresponding apparent N surplus was 2710 or 3924 kg⋅ha−1 per 3 years. Due to little increase of biomass N uptakes during vegetable seasons, the accumulated N in soil profile would be a potential loss source, largely via leaching of both nitrate and EON. Application of manures slowed soil acidification but intensified secondary salinization of the greenhouse soil. Considering the manures-induced high soil N accumulation and loss, well-balanced evaluation of the role of manures in high-input agricultural ecosystems is needed.

Full access

Chenping Zhou, Ruiting Chen, Yaqiang Sun, He Wang, Yi Wang, Ting Wu, Xinzhong Zhang, Xuefeng Xu and Zhenhai Han

Bridge grafting is widely applied in trunk-wounded apple trees. In this study, we carried out semigirdling and ring girdling on the trunk of ‘Nagafu 2’/Malus baccata (L.) Borkh apple trees to simulate trunk injury. We then bridge grafted a M9 self-rooted rootstock on the injured trunks to study the effects of bridge grafting on flowering, fruit-set, tree vigor, and fruit characteristics in ‘Nagafu 2’ apple. The results showed that both semigirdling and ring girdling due to the large wounded area caused significant decrease in flowering, fruit-set, and tree vigor (estimated by measuring leaf area, leaf gas exchange, tree height, and shoot growth); in addition, ring girdling increased flesh and peel firmness. However, bridge grafting of M9 self-rooted rootstock on semigirdling and girdling apple trees resulted in partial recovery of tree vigor (leaf area and photosynthesis) and maintaining the reduction of vegetative growth, thereby increasing flowering, fruit-set, yield, fruit weight, and peel firmness.

Free access

Chandra Thammina, Mingyang He, Litang Lu, Kaishuang Cao, Hao Yu, Yongqin Chen, Liangtao Tian, Junmei Chen, Richard McAvoy, Donna Ellis, Degang Zhao, Yuejin Wang, Xian Zhang and Yi Li

Euonymus alatus (Thunb.) Sieb., commonly known as “burning bush,” is an extremely popular landscape plant in the United States as a result of its brilliant showy red leaves in fall. However, E. alatus is also seriously invasive because of its prolific seed production and effective seed dispersal by birds. Thus, development of sterile, non-invasive, seedless triploid E. alatus is in high demand. In this article, we report successful production of triploid E. alatus using endosperm tissues as explants. In our study, ≈50% of immature endosperm explants and 14% of mature endosperm explants formed compact, green calli after culture in the dark for 8 weeks and then under light for 4 weeks on Murashige and Skoog (MS) medium supplemented with 2.2 μM BA and 2.7 μM α-naphthaleneacetic acid (NAA). Approximately 5.6% of the immature endosperm-derived calli and 13.4% of mature endosperm-derived calli initiated shoots within 8 weeks after they were cultured on MS medium with 4.4 μM benzyladenine (BA) and 0.5 μM indole-3-butyric acid (IBA). Eighty-five percent of shoots rooted after culture on woody plant medium (WPM) containing 4.9 μM IBA for 2 weeks and then on hormone-free WPM medium containing 2.0 g·L−1 activated charcoal for 4 weeks. Eight independently regenerated triploid plants have been identified. Triploid plant regeneration rates observed were 0.42% from immature endosperm explants and 0.34% from mature endosperm explants, respectively, based on the number of endosperm explants cultured. Because triploid plants cannot produce viable seeds, and thus are sterile and non-invasive, some triploid E. alatus plant lines reported here can be used to replace the currently used invasive counterparts. Chemical names used: benzyladenine (BA), indole-3-butyric acid (IBA), and α-naphthaleneacetic acid (NAA).

Open access

Tao Dong, Fang-cheng Bi, Yong-hong Huang, Wei-di He, Gui-ming Deng, Hui-jun Gao, Ou Sheng, Chun-yu Li, Qiao-song Yang, Gan-jun Yi and Chun-hua Hu

An efficient biolistic transformation system of banana combined with a liquid medium selection system was developed during this study. An embryogenic cell suspension (ECS) of Musa acuminata cv. Baxi (AAA) was bombarded with a particle delivery system. After 7 days of restoring culture in liquid M2 medium, embryogenic cells were transferred to a liquid selection M2 medium supplemented with 10 μg/mL hygromycin for resistance screening. The untransformed cell clusters were inhibited or killed, and a small number of transformants proliferated in the liquid selection medium. After the 0th, first, second, and third generation of antibiotic screening, there were 0, 65, 212, and 320, respectively, vitality-resistant buds obtained from a 0.5-mL packed cell volume (PCV) of embryogenic cell suspension. The β-glucuronidase (GUS) staining, polymerase chain reaction (PCR) analysis, and Southern blot hybridization results all demonstrated a 100% positive rate of regenerated resistant seedlings. Interestingly, the number of buds obtained through third-generation screening was almost equal to that obtained from the original ECS in M2 medium without antibiotics. These results suggested that the liquid medium selection system facilitated the proliferation of a positive transgenic ECS, which significantly improved the regeneration rate of transformants. This protocol is suitable for the genetic transformation of all banana genotypes and is highly advantageous to varieties with low callusing potential.