Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Yi Gong x
Clear All Modify Search

Because of the growing threat of global warming, drought stress could severely affect the normal growth and development of crop plants. To alleviate such an adverse effect, there is a need to screen watermelon germplasm collections to identify genetic sources for potential drought tolerance. In the present study, 820 accessions of USDA's Citrullus PIs and 246 watermelon breeding lines were evaluated for their drought tolerance at the seedling stage under extreme water stress conditions in a greenhouse. Significant variations in drought tolerance were observed in the Citrullus germplasm collections. Using fast clustering analysis, the tested watermelon materials could be assigned into four groups, including tolerant, intermediate tolerant, moderately sensitive, and sensitive, respectively. The most drought-tolerant Citrullus germplasm, including 13 Citrullus lanatus var. lanatus and 12 C. lanatus var. citroides accessions, were originated from Africa. These genetic materials could be used for rootstock breeding or for developing drought-tolerant watermelon cultivars.

Free access

Powdery mildew of cucurbits, incited by Podosphaera xanthii (Castagne) Braun & Shishkoff (syn. Sphaerotheca fuliginea auct. p.p.), is an economically important foliar disease. which is now common in watermelon [Citrullus lanatus (Thunb.) Mastum. & Nakai]. This disease occurs in all watermelon-growing areas and can reduce yields by up to 30%. Finding and breeding for resistance to this disease is important to reduce dependence on fungicides and to use in combination with fungicides to limit the spread of fungicide-resistant P. xanthii. This is the first English report that race 2WF of P. xanthii can infect watermelon. It is the prevalent race of watermelon powdery mildew in Beijing.

Free access

Pecan (Carya illinoinensis) is a tree nut native to North America. Although inhibited light exposure (most specifically as a result of overlapping tree canopies) has been shown to impair yield, the effect of this factor on nut antioxidant properties remains unknown. This study investigated effects of mechanical pruning and canopy height position of fruit on pecan kernel antioxidant contents and capacity. Beginning in 2006, trees in a ‘Western’ pecan orchard in New Mexico were subjected to three mechanical pruning frequency treatments (annual, biennial, and triennial) paralleling conventional practices, while other trees were maintained as unpruned controls. During the 2012 to 2014 seasons, pecans were sampled at fruit maturity from three canopy height zones (“low,” “middle,” and “high,” corresponding to 1.5 to 3.0 m, 3.0 to 4.5 m, and 4.5 to 6.0 m above the orchard floor). In vitro phenolics contents and antioxidant capacities of the nutmeats were evaluated by total phenolics content (TPC) and oxygen radical absorbance capacity (H-ORACFL), respectively. Soluble ester- and glycoside-bound phenolics were quantified by reversed-phase high-performance liquid chromatography (HPLC). For both TPC and H-ORACFL, results determined pruned samples had significantly higher values than unpruned samples (P < 0.001 for both comparisons), and that samples of “high” canopy height were significantly greater than those of “middle” height, which were in turn greater than those of “low” height (P < 0.001 for all comparisons). HPLC findings showed that in all three phenolic fractions (free, esterified, and glycoside-bound phenolics), nuts acquired from pruned trees had substantially greater concentrations of ellagic acid and its derivatives. Our findings indicate mechanical pruning of pecan trees and higher tree canopy position of fruit increase nut antioxidant properties.

Open Access

A genetic linkage map was constructed for watermelon using 117 recombinant inbred lines (RILs) (F2S7) descended from a cross between the high quality inbred line 97103 [Citrullus lanatus var. lanatus (Thunb.) Matsum. & Nakai] and the Fusarium wilt (races 0, 1, and 2) resistant U.S. Plant Introduction (PI) 296341 (C. lanatus var. citroides). The linkage map contains 87 randomly amplified polymorphic DNA (RAPD) markers, 13 inter simple sequence repeat (ISSR) markers, and four sequenced characterized amplified region (SCAR) markers. The map consists of 15 linkage groups. Among them are a large linkage group of 31 markers covering a mapping distance of 277.5 cM, six groups each with 4 to 12 markers covering a mapping distance of 51.7 to 172.2 cM, and eight small groups each with 2-5 markers covering a mapping distance of 7.9 to 46.4 cM. The map covers a total distance of 1027.5 cM with an average distance of 11.7 cM between two markers. The map is useful for the further development of quantitative trait loci (QTLs) affecting fruit qualities and for identification of genes conferring resistance to Fusarium wilt (races 0, 1 and 2). The present map can be used for further construction of a reference linkage map for watermelon based on an immortalized mapping population with progenies homozygous for most gene loci.

Free access

Watermelon belongs to the genus Citrullus. There have been continuing interests in breeding of watermelon for economic benefits, but information on the scope and utilization of genetic variations in Citrullus is still limited. The present study was conducted in 2012–13, to evaluate the genetic diversity and population structure of the 1197 line watermelon collection maintained by the Beijing Vegetable Research Center (BVRC), which belongs to seven Citrullus species including Citrullus naudinianus, Citrullus colocynthis, Citrullus rehmii, Citrullus ecirrhosus, Citrullus amarus, Citrullus mucosospermus, and Cirullus lanatus subsp. vulgaris. Twenty-three highly informative microsatellite markers evenly distributed in the watermelon genome were used to assess genetic diversity in this collection. The markers detected on an average of 6.05 alleles per locus with the average value of polymorphism information content (PIC) at 0.49. A high level of gene diversity [Nei’s gene diversity index (Nei) = 0.56] and a low observed heterozygosity (H o = 0.10) were revealed within the collection. Structure analysis grouped the 1197 accessions into two main populations (Pop I and Pop II) and an admixture group. Pop I contained 450 accessions from C. lanatus subsp. vulgaris (446) and C. mucosospermus (4). Pop II comprised 465 accessions, 379 of which belonged to C. lanatus subsp. vulgaris and 86 to C. naudinianus (3), C. ecirrhosus (2), C. rehmii (2), C. colocynthis (11), C. amarus (58), and C. mucosospermus (10). The remaining 282 accessions were classified as an admixture group. The two main populations were further subdivided into four subgroups. The groupings were consistent with the estimation of F statistics (F st) and Nei’s genetic distances in collections. We confirmed the distinct genetic backgrounds between American and East Asian ecotypes. Subsequently, we defined a core set consisting of 130 accessions including 47 from Pop I, 68 from Pop II, and 15 from the Admixture group. This core set was able to capture all 133 alleles detected by 23 simple sequence repeats (SSRs) in 1197 accessions. These results will facilitate efficient use of genetic variations in Citrullus in watermelon breeding and help optimization of accessions in genomewide association studies.

Free access