Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Yavin Shalom x
Clear All Modify Search

Britex and Zivdar, water-based polyethylene waxes, were applied in commercial and experimental formulations as spray coating, a single dip, or double dips on `Murcott' tangerine (Citrus reticulate Blanco) fruits. Postharvest waxing of `Murcott' tangerine reduced weight loss but affected the sensory characteristics of the fruit. Charges in fruit weight loss and juice composition occurred in the waxed fruits after 4 weeks of storage at 5C plus 1 week of simulated retail handling at 17C. Changes in internal fruit atmosphere were related to fruit flavor quality.

Free access

Abstract

Mature green lemon (Citrus limon Burm.) fruits are degreened commercially with ethylene to enhance yellow color development and improve marketing quality. This treatment often results in the development of a peel disorder called red blotch, a superficial reddish-brown discoloration, which may cover most of the fruit peel. We found that degreening at 30°C, instead of the recommended temperature of 25°, eliminated the disorder. Similarly, a predegreening treatment of dipping the fruit in the antioxidant ethoxyquin (“Stop Scald”) prevented red blotch development. The high temperature and the antioxidant may act on oxidative enzyme systems, which are apparently causative factors of the disorder.

Open Access

Fruit of pepper (Capsicum annuum L.) is hollow by nature, which limits its water reservoir capacity, and as such, small amounts of water loss result in loss of freshness and firmness, which reduce fruit quality, shelf life, and market value. In order to understand the basis for water loss from fruit, 10 pepper accessions with wide variation in water loss rate were used to study physiological and biochemical factors associated with postharvest water loss in ripe pepper fruit during storage. Postharvest water loss rate in ripe pepper fruit stored at 20 °C, and 85% relative humidity, was found to be associated with cell membrane ion leakage, lipoxygenase activity, and total cuticular wax amount. Total cuticular wax amounts were highest in the high-water-loss pepper fruit, and lowest in the low-water-loss fruit. However, total cuticle amount (isolated enzymatically and quantified gravimetrically), total cutin monomer amount, and the amount of individual cutin monomer and wax constituents (determined using gas chromatography mass spectrometry) indicated no direct association with postharvest water loss rates. Fruit fresh weight, pericarp weight, pericarp surface area, pericarp thickness, initial water content, and dry matter were highly associated with each other, but less so with water loss rate. Fruit of accessions displaying high fruit water loss rate matured and ripened earlier than fruit of accessions displaying low-water-loss rate. Cell membrane ion leakage and lipoxygenase activity were higher after storage than immediately after harvest. Pepper fruit total cuticle wax amount, lipoxygenase activity, and cell membrane ion leakage were directly related to postharvest water loss rate in pepper fruit during storage.

Free access