Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Yanling Zeng x
Clear All Modify Search
Free access

Ze Li, Xiaofeng Tan, Zhiming Liu, Qing Lin, Lin Zhang, Jun Yuan, Yanling Zeng and Lingli Wu

Camellia oleifera Abel. is one of four major woody oil plants in the world. The objective of the current study was to evaluate the effect of different plant growth regulators (PGRs) and concentrations on direct organogenesis using cotyledonary nodes, hypocotyls, and radicle explants. High induction frequency of adventitious shoots were obtained from cotyledonary nodes, hypocotyls, and radicle explants (85.2%, 73.6%, and 41.0%, respectively) when cultured on half-strength Murashige and Skoog (1/2 MS) medium containing 2.0 mg·L−1 6-benzylaminopurine (BA) and 0.1 mg·L−1 indole-3-acetic acid (IAA). Microshoots from cotyledonary nodes, hypocotyls, and radicle explants were then transferred to 1/2 MS medium containing 2.0 mg·L−1 BA and 0.05 mg·L−1 indole-3-butyric acid (IBA) for shoot multiplication, resulting in 6.9 shoots per explant. The shoots were transferred to Woody Plant Medium (WPM) supplemented with various α-naphthalene acetic acid (NAA) and gibberellic acid (GA3) for shoot elongation. The mean length of shoots and the number of leaves per shoot were 3.7 and 6.6 cm, respectively, in WPM supplemented with 0.5 mg·L−1 NAA and 3.0 mg·L−1 GA3. The highest rooting of shoots (90.2%) or the number of roots per shoot (7.2) was obtained when elongated microshoots were transferred to 1/2 MS medium supplemented with 3.5% perlite, 1.0 mg·L−1 IBA and 2.0 mg·L−1 NAA. The rooted plantlets were successfully acclimatized in the greenhouse with a survival rate of 90.0%. The in vitro plant regeneration procedure described in this study is beneficial for mass propagation and improvement of C. oleifera through genetic engineering.

Free access

Jie Fu, Qiaoyan Xiang, Xianbao Zeng, Mei Yang, Ying Wang and Yanling Liu

To assess the genetic diversity among lotus (Nelumbo) accessions and evaluate the correlation between genetic variation and morphological classification, we sampled 138 accessions: two of N. lutea, 112 of N. nucifera, 17 of hybrids between N. nucifera and N. lutea, and seven Japanese cultivars. The 11 selected combinations of amplified fragment length polymorphism (AFLP) primers produced 138 polymorphic loci, and the percentage of polymorphism was 28.7%. The unweighted pair group method with arithmetic mean (UPGMA) dendrogram clustered all the accessions into two groups: Group I comprised N. lutea and its hybrids with N. nucifera; Group II included N. nucifera and its hybrids with N. lutea and Japanese cultivars. Population structure analysis identified four main clusters: N. lutea clustered mainly in C1, whereas N. nucifera clustered in C2, C3, and C4, which was consistent with the UPGMA and principal coordinate analysis results. The Japanese cultivars were related more closely to N. nucifera (genetic similarity coefficient = 0.74) than to N. lutea (0.46); hence, the Japanese cultivars can be classified as N. nucifera. Moreover, rhizome lotuses formed a separate subclade, whereas seed lotuses were interspersed among flower lotuses, which demonstrated that rhizome lotuses were distinct from flower and seed lotuses. Plant size, flower color, and other morphological criteria used commonly to classify lotuses were correlated with genetic variation to a certain extent but not sufficiently for accurate classification. It appears that it is necessary to use both DNA markers and morphological characteristics to classify lotus species and cultivars.

Restricted access

Ze Li, Kai Shi, Fanhang Zhang, Lin Zhang, Hongxu Long, Yanling Zeng, Zhiming Liu, Genhua Niu and Xiaofeng Tan

As a result of its high photosynthetic efficiency, the tung tree (Vernicia fordii) is a fast-growing heliophile, yielding fruit within 3 years. In addition, tung oil extracted from the fruit seeds is an environmentally friendly paint used widely in China. However, mutual shading inside a tung tree canopy leads to a low yield of fruit because of weak or dead lower branches. In this project, a pot experiment was conducted to understand the growth, physiological, anatomical structure, and biochemical responses of tung trees under various shading levels. Tung tree seedlings were subjected to different light intensities—100% sunlight (no cover), L100; 75% sunlight (25% shading), L75; 50% sunlight (50% shading), L50; and 20% sunlight (80% shading), L20—from June to August. Results indicate that the L75 treatment reduced significantly the net photosynthetic rate (Pn), stomatal conductance (g S), transpiration rate (E), total aboveground and root dry weight (DW), maximum net photosynthetic rate (A max), and maximum rate of electron transport at saturating irradiance (Jmax) compared with the control, although plant height and leaf area (LA) were not reduced. Lower light intensities (L50 and L20) and longer duration of treatment led to greater reduction in growth, leaf thickness, and photosynthetic potential (A max and Jmax). Chlorophyll a (Chl a), chlorophyll b (Chl b), and total chlorophyll content were increased in the L50 and L20 treatments compared with L100 and L75. There was no significant reduction in the enzyme activities of ribulose-1,5-bisphosphate carboxylase (Rubisco) and phosphoenolpyruvate (PEPC) of the seedlings using the L75 treatment; however, lower light intensities (L50 and L20) and longer duration of shade treatment resulted in a significant reduction in enzyme activity. In summary, the results suggest that tung trees have greater photosynthetic activity under high light intensity. Shading, even at 20%, especially for the longer term, reduced photosynthetic efficiency and growth. To prevent growth reduction, tung trees should be grown under full sun with a daily light integral (DLI) of ≈46 mol·m‒2·d‒1, and mutual shading should be avoided by proper spacing and pruning.