Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Yanhong He x
Clear All Modify Search

Garden impatiens (Impatiens walleriana), a very important floricultural crop in the United States, has been devastated by impatiens downy mildew (IDM) in recent years. This study was conducted to determine if induced tetraploidy could improve impatiens resistance to downy mildew. Tetraploids were induced by colchicine and confirmed by chromosome counting. Compared with diploids, induced tetraploids showed significant morphological changes, including larger and thicker leaves with larger and fewer stomata; thicker and fewer stems; larger and fewer flowers; and larger pollen grains with higher stainability. In detached leaf and in vivo inoculation assays, tetraploids exhibited improved downy mildew resistance, with lower disease severity, disease incidences, and sporangia densities. Plasmopara obducens, the causal agent of IDM, underwent a similar development process in the leaf tissue of diploids and tetraploids. These results suggest that induced tetraploidy can result in significant changes in impatiens leaf and plant morphology and can increase impatiens resistance to downy mildew to a certain extent.

Free access

Much nitrogen (N) is lost in high-input protected cropping systems mainly via leaching of not only nitrate-N but also extractable organic N (EON), but the role of EON in this process is poorly appreciated. A consecutive 3-year plot experiment was conducted to investigate the impact of co-application of manures with chemical N fertilizer on N accumulation and loss in a greenhouse soil rotationally planted with cucumber or tomato and lettuce. Application of manures significantly enhanced the average contents and stocks of NO3 -N, EON, and total N (TN) in 0- to 60-cm soil layer, although EON accumulated within growing season, while NO3 -N accumulated with fluctuation, and TN accumulated gradually throughout the 3-year experiment. With application rate at 120 or 180 t dry manures per hectare per 3 years, the corresponding apparent N surplus was 2710 or 3924 kg⋅ha−1 per 3 years. Due to little increase of biomass N uptakes during vegetable seasons, the accumulated N in soil profile would be a potential loss source, largely via leaching of both nitrate and EON. Application of manures slowed soil acidification but intensified secondary salinization of the greenhouse soil. Considering the manures-induced high soil N accumulation and loss, well-balanced evaluation of the role of manures in high-input agricultural ecosystems is needed.

Free access

Aspergillus niger is a common pathogenic fungus causing postharvest rot of fruit and vegetable, whereas the knowledge on virulence factors is very limited. Superoxide dismutase [SOD (EC 1.15.1.10)] is an important metal enzyme in fungal defense against oxidative damage. Thus, we try to study whether Cu/Zn-SOD is a virulence factor in A. niger. Cu/Zn-SOD encoding gene sodC was deleted in A. niger [MA70.15 (wild type)] by homologous recombination. The deletion of sodC led to decreased SOD activity in A. niger, suggesting that sodC did contribute to full enzyme activity. ΔsodC strain showed normal mycelia growth and sporulation compared with wild type. However, sodC deletion markedly increased the cell’s sensitivity to intracellular superoxide anion generator menadione. Besides, spore germination under menadione and H2O2 stresses were significantly retarded in ΔsodC mutant compared with wild type. Further results showed that sodC deletion induced higher superoxide anion production and higher content of H2O2 and malondialdehyde (MDA) compared with wild type, supporting the role of SOD in metabolism of reactive oxygen species (ROS). Furthermore, ΔsodC mutant had a reduced virulence on chinese white pear (Pyrus bretschneideri) as lesion development by ΔsodC was significantly less than wild type. The determination of superoxide anion, H2O2, and MDA in A. niger-infected pear showed that chinese white pear infected with ΔsodC accumulated less superoxide anion, H2O2, and MDA compared with that of wild type A. niger, implying that ΔsodC induced an attenuated response in chinese white pear during fruit–pathogen interaction. Our results indicate that sodC gene contributes to the full virulence of A. niger during infection on fruit. Aspergillus niger is one of the most common species found in fungal communities. It is an important fermentation industrial strain and is also known to cause the most severe symptoms in fruit during long-term storage (Pel et al., 2007). Meanwhile, plants activate their signaling pathways to trigger defense responses to limit pathogen expansion. One of the earliest host responses after pathogen attack is oxidative burst, during which large quantities of ROS are generated by different host enzyme systems, such as glucose oxidase (Govrin and Levine, 2000). ROS such as singlet oxygen, superoxide anion, hydroxyl (OH), and H2O2 are released to hinder the advance of pathogens (Gara et al., 2003). ROS can react with and damage cellular molecules, such as DNA, protein, and lipids, which will limit fungal propagation in the host plant (Apel and Hirt, 2004).

Free access