Search Results
Foliar application of fertilizers on turfgrass via overhead fertigation or spray can improve nutrient absorption efficiency and uniformity. Foliar fertilizers can also be combined with other chemical applications to save labor and energy. However, foliar application of nitrogen may result in root growth reduction. The objective of this study was to evaluate if a liquid organic amendment can be tank-mixed with liquid fertilizer to improve creeping bentgrass (Agrostis stolonifera) performance. This greenhouse study was conducted on ‘Penncross’ creeping bentgrass grown in sand or 90 sand:10 peat (v/v) root zones. Three fertilizer packages (4N–0P–0.8K, 29N–0.9P–2.5K, and 20N–8.8P–16.6K) with or without the organic amendment, a liquid suspension derived from naturally mined humic materials, were tested in the study. Tank-mixing organic amendment resulted in better or same turfgrass visual quality and lower clipping yield compared with foliar fertilization alone. Tank-mixing organic amendment in liquid fertilizers resulted in an average increase of root/shoot biomass ratio from 0.62 to 0.65 grown in the sand-based root zones. The effect of organic amendment was shown in all liquid fertilizers tested except 20N–8.8P–16.6K. The results showed tank-mixing organic amendment with the right liquid fertilizer can reduce mowing frequency without reducing the turf quality. Field work is needed to test if the increased root/shoot biomass ratio by tank-mixing organic amendment with liquid fertilizer can contribute to drought tolerance in creeping bentgrass maintained at fairway height in sand-based root zones.
Petroleum-based spills on turfgrass often occur during lawn care maintenance. Damage caused by diesel and hydraulic fluid is particularly difficult to correct. The objective of this study was to compare the effectiveness of combining mulching with remediation for reseeding spilled areas in lawns. Diesel and hydraulic fluid were applied to plots at a rate of 15 L·m−2. Immediately after the spill treatments, two liquid humic amendments and an activated flowable charcoal were applied at a volume rate of 8 L·m−2, respectively, with tap water/dishwashing detergent used as a control. Nitrate nitrogen was added to each remediation treatment to facilitate remediation. The spilled areas were reseeded with perennial ryegrass (Lolium perenne) and then mulched with biochar, peat pellets, and paper pellets, respectively. At 6 weeks after seeding, humic amendment 1 and activated charcoal showed better turf quality than humic amendment 2. Peat pellet mulching presented better turf quality than other mulching methods. Reseeding perennial ryegrass and mulching with peat pellets after remediation with either humic amendment 1 or activated charcoal resulted in acceptable turf quality 6 weeks after diesel and hydraulic fluid spills. Therefore, this reestablishment method is recommended as a practical way to deal with diesel or hydraulic fluid spills in cool-season turfgrasses.
Echinacea purpurea L. is one of the important ornamental and medicinal plant species. Ploidy manipulation is a valuable tool for improving plant quality or production in E. purpurea as well as in many other plants. To study the segregation of pure ploidy plantlets from colchicine-induced ploidy chimeras in E. purpurea, we used a chimera plantlet that consisted of 1.93% diploid, 35.04% tetraploid, and 63.03% octoploid cells as the source material for experiments. The results showed that three factors significantly influenced the segregation, i.e., the component ratios of different ploidy cells in the chimera, the number of sequential passages, and the methods of segregation culture of the chimera plantlets. Other factors, such as explant types (i.e., leaf, petiole, or root) and 6-benzyladenine (BA) concentrations (i.e., 0.2, 0.4, 0.8, and 1.2 mg·L−1) occasionally influenced the segregation. Pure chromosome-doubled polyploids are not easily obtained in various plant species, so segregation culture of ploidy chimeras may potentially be more effective. The morphological characteristic and content of cichoric acid were compared among diploid, tetraploid, and octoploid plants. Results indicated that tetraploid and octoploid plants had more stunted growth, larger stomata, lower stomata frequency, more chloroplast number in guard cells, and higher cichoric acid content than original diploid lines.
In recent years, air circulation has been used in protected cultivation to improve the microenvironment around seedlings, which in turn enhances photosynthesis and seedling growth. However, a practical and precise air circulation device has not yet been reported, especially one for growing seedlings in a greenhouse. Considering the use of a seedbed in seedling cultivation, a blower that can move back and forth on the seedbed and accurately control the air velocity is designed. In this experiment, we take the nonblowing treatment as the control (CK); three air velocities (0.3, 0.6, and 0.9 m/s) were selected to investigate the effect of interval blowing on the microenvironment of the canopy, physiology of seedling growth, stomatal characteristics of leaves, and stem mechanics of tomato seedlings. The three air velocities were found to significantly reduce the canopy temperature by 0.44, 0.78, and 1.48 °C lower than the CK, respectively, and leaf temperature by 0.83, 1.57, and 2.27 °C lower than the CK, respectively, in cultivated seedlings during summer. The relative humidity of the tomato seedling canopy decreased by 2.7% to 7.0%. Compared with the CK, the plant height of tomato seedlings decreased by 13.54% and root dry mass, root-shoot ratio, and seedling quality index (SQI) increased by 34.63%, 21.43%, and 14.29%, respectively, at 0.6 m/s. In addition, mechanical indexes such as hardness and elasticity of the tomato seedling stem were higher under air disturbance than those of the CK. The best effect was seen in the treatment with the air velocity of 0.6 m/s, in which the hardness and elasticity of the stem base and the first node were significantly higher than that of the CK. In conclusion, air disturbance generated by the air blowing device we designed effectively improved the microenvironment around the plants, enhanced the physiological activity of the seedlings, and thereby promoted seedling growth.
Deicing salts often are applied to sidewalks and roadways to enhance pedestrian and driving safety during freezing weather. For example, in eastern North Dakota, average annual snow days and amount are 29 days and 40 inches, respectively. This study was conducted in Fargo, ND, to investigate the population dynamics of turfgrass mixtures composed of kentucky bluegrass [KB (Poa pratensis)], creeping red fescue [RF (Festuca rubra)], and alkaligrass [ALK (Puccinellia sp.)] with the goal of optimizing turf quality by selecting seed ratios containing these species in home lawn mixtures and subject to frequent applications of deicing salts. A total of 21 mixtures were generated based on simplex-lattice design with KB, ALK, and RF contributing to 0%, 20%, 40%, 60%, 80%, and 100% of their respective full-seeding rate of 150, 150, and 300 lb/acre, respectively, after pure live seed (PLS) adjustment. The mixtures were tested at annual deicing salt rates of 0, 160, 320 lb/acre, which represent typical application. The results showed that the botanical component of the stands of grasses shifted over a 2-year period for all salt levels. Despite the good salinity tolerance of ALK reported elsewhere, it did not contribute to the improvement of turf quality in mixtures receiving deicing salts at 320 lb/acre per year. Therefore, ALK is not recommended for lawn, but mixing KB and RF in 48% and 52% of their respective full-seeding rates was recommended for areas adjacent to deicing salt applications.
Tall fescue [Schedonorus arundinaceus (Schreb) Dumort] has potential in cool arid regions, where it is often subject to salinity stress. The objective of this 2-year field study was to investigate the effect of nitrogen sources on tall fescue turf quality under salinity stress in the northern Great Plains of North America. ‘Wolfpack’, ‘Wolfpack II’, ‘Tar Heel’, ‘Tar Heel II’, ‘Jaguar 3’, ‘Jaguar 4G’, and ‘Arid 3’ were treated with NaCl and CaCl2 in equal amounts. Six N sources were used for fertilization: nitrate-N, urea-N, ammonium-N, urea-N/ammonium-N/nitrate-N, urea-N with urase and nitrification inhibitor, and organic N. Salt treatment reduced turf quality of all cultivars. Turf quality was affected differently by N source. Regardless of salt treatments, urea stabilized with a urease inhibitor and a nitrification inhibitor consistently had the best turf quality. Equal amounts of nitrate, ammonium, and urea-N yielded the lowest turf quality. However, there was no interaction between N source and salt treatment. These results were also supported by green density (GD), dark-green color index (DGCI), shoot chlorophyll (Chl) content, and leaf relative water content (RWC). Tall fescue cultivars responded to salinity treatment differently, with ‘Wolfpack II’ being the cultivar ranked consistently at the top and maintained above the acceptable level of visual quality.
Our goal was to determine the ultrastructure features and the dynamic changes in polysaccharides and neutral lipids in developing anthers of rose balsam (Impatiens balsamina), and to better understand the mechanisms controlling male reproductive development. Transmission electron microscope (TEM) techniques were used to study the ultrastructural characteristics of the anthers, and histochemical methods were used to determine levels of polysaccharides and lipids. The cytokinesis in the microsporocyte meiosis was simultaneous type, and microspore tetrads were mainly tetrahedral. The pollen exine began to form at the tetrad stage. The mature pollen grains were oval-shaped and bicellular. Accumulation of reserve substances began at the late microsporogenesis stage, and an abundance of starch grains and lipids were stored in pollen grains at anthesis. Polysaccharides and lipids changed in different stages and played an important role in anther development. Moreover, the calcium oxalate crystals may protect the pollen and suggest that calcium distribution is related to anther development.
Light, as the energy and signal sources for plant growth and development, is one of the most important environment factors in recently developed plant factories with artificial light (PFALs). To find the optimal combination of light wavelengths for lettuce (Lactuca sativa cv. ‘Tiberius’) plant growth in a PFAL, four treatments, each using red (R; 662 nm) and blue light (B; 447 nm) with a ratio of 4:1 and photon flux density (PFD) of 150 μmol·m−2·s−1, and mixing, respectively, with 50 μmol·m−2·s−1 of green light (G; 525 nm; RBG), yellow light (Y; 592 nm; RBY), orange light (O; 605 nm; RBO) and far-red light (FR; 742 nm; RBFR), were set up during this experiment. A combination of R and B with a ratio of 4:1 and PFD of 200 μmol·m−2·s−1 was set as the control (RB). The responses of lettuce growth, morphology, anatomical structure of the lettuce leaf, photosynthetic performance, lettuce nutritional quality, and energy use efficiency were investigated. The results showed that RBG, RBO, and RBFR increased the shoot fresh weight of lettuce by 20.5%, 19.6%, and 40.4%, and they increased the shoot dry weight of lettuce by 24.2%, 13.4%, and 45.2%, respectively, compared with those under RB. The Pn under RBY was significantly lower than that under RB, although no significant differences in chlorophyll or carotenoid content were found between RBY and RB. RBG increased the lettuce leaf area, the thickness of the leaf palisade tissue, Pn, and light use efficiency compared with those under RB. Plants grown under RBO showed better photosynthetic capacity, such as higher Pn, ΦPSII, and other photosynthetic parameters. RBFR caused an increase in lettuce leaf area and energy use efficiency, but a decrease in leaf thickness and Pn of the single leaf. Moreover, tipburn injury was observed under RBFR. Therefore, these results demonstrate that RBG and RBO can be considered optimal combinations of light wavelengths for lettuce growth in a PFAL in this experiment, although plant growth can also be improved by using RBFR.
Chrysopogon aciculatus (Retz.) Trin. is a perennial turfgrass for its low management and resistance. To develop simple sequence repeat (SSR) markers for C. aciculatus, we used four Roche 454 pyrosequencing, combined with the magnetic bead enrichment method FIASCO (fast isolation by amplified fragment length polymorphism of sequences containing repeats) to isolate from the C. aciculatus. A total of 66,198 raw sequencing reads were obtained with 4289 sequences (6.48%) were fit for primer pair design. One hundred microsatellite loci were selected to test the primer amplification efficiency in 20 accessions, and out of these, 11 loci were polymorphic. The amount of observed alleles ranged from three to six, with an average of 3.64. Nei’s genetic diversity values ranged from 0.085 to 0.493, with an average of 0.293. Shannon’s information index values ranged from 0.141 to 0.686, with an average of 0.428. Twenty accessions were clustered into three groups by unweighted pair-group method with arithmetic means (UPGMA). These SSR markers will provide an ideal marker system to assist with gene targeting, cultivar variety or species identification, and marker-assisted selection in C. aciculatus species.