Search Results
Organic acid secretion from higher plant roots into the rhizosphere soil plays an important role in nutrient acquisition and metal detoxification; however, their precise functions and the related mechanisms in abiotic stress tolerance remain poorly understood. Tobacco is an important crop plant, so thoroughly elucidating these factors in tobacco is of high priority. In the present study, the activation effect on soil potassium (K), contents of exuded organic acids, and physiological changes in the roots of various tobacco varieties under both normal K supply and K-deficiency stress were investigated. Our results showed that one high-K variety (ND202) exhibited a significantly higher total content of organic acids in the root exudates and the highest available K content in the rhizosphere soil, compared with two common ones (K326 and NC89). Moreover, the high-K tobacco variety was less affected in terms of root vigor under K-deficiency stress, and displayed greater increases in the activities of the stress-resistant enzymes consisting of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). Taken together, these results provide evidence that tobacco roots exude large amounts of organic acids to increase the available K content in the rhizosphere soil and improve the utilization rate of soil K.
The rare species Magnolia wufengensis frequently suffers from freezing injury in northern China. To investigate the influence of exogenous abscisic acid (ABA) application on the natural cold acclimation of M. wufengensis, physiological and biochemical changes in field-grown M. wufengensis seedlings subjected to foliar ABA treatments at four concentrations (0, 300, 600, and 900 mg·L−1) were evaluated from Sept. 2012 to Jan. 2013. The optimum foliar application concentrations of ABA for M. wufengensis were between 600 and 900 mg·L−1, which led to faster shoot growth cessation, leaf senescence, and development rates of bud endodormancy level and shoot freezing tolerance. The improved freezing tolerance under exogenous ABA application was associated with promoted dehydration and accumulation of proline, soluble protein, and certain soluble sugars such as glucose and fructose. Foliar ABA treatments initiated a cascade of steps for advancing the cold acclimation process of M. wufengensis. We suggest that exogenous ABA application may be used on M. wufengensis grown in northern China, where there are short growing seasons and early fall frost events.
To study the effects of nitrogen (N), phosphorus (P), and potassium (K) fertilizers on the yield of ‘Jianbao’ pumpkin (Cucurbita maxima Duch), we conducted experiments using the “3414” optimal design scheme in Dehua County, Quanzhou, Fujian, China. Overall, three fertilizer factors (N, P, K) were tested with four fertilization levels (level 0, no fertilizer; level 1, 0.5-times the typical fertilizing amount; level 2, typical fertilizer application; level 3, 1.5-times the typical application), with a total of 14 different fertilization treatments. Based on the results of this study, a corresponding fertilization performance model was established to provide a practical basis for ensuring highly efficient cultivation of pumpkin in the field. Our results showed that the experimental data could not be fitted with a ternary quadratic polynomial fertilizer model, but that it could be fitted with a single-variable quadratic fertilizer model. According to the fitted model, pumpkin yield first increased and then decreased with the increasing amount of N, P, and K used. We identified significant regression relationships between ‘Jianbao’ pumpkin yield and the amount of N, P, and K in the fertilizer. Finally, based on the single-variable quadratic fertilizer model, we suggest that the quantities of N, P, and K fertilizer used for growing 1 ha of ‘Jianbao’ pumpkin should be 390.5, 213.8, and 371.3 kg, respectively.
Tobacco is traditionally an industrial crop that is used for manufacturing cigarettes. However, due to health concerns and global tobacco control movements, alternative uses of tobacco are urgently needed to support tobacco farmers and vendors. Tobacco is also an oilseed crop with an oil yield ranging from 30% to 40 of its dry weight. However, there is still no information on the effects of nitrogen application on tobacco seed yield and seed oil production. The objective of this study was to evaluate the effects of N fertilization (90, 120, 150, and 180 kg·ha−1 N) on the seed yield, oil content, fatty acid composition, and seed germination characteristics of tobacco plants at two locations. The results showed that applying increasing amounts of N to tobacco plants significantly increased their total seed yields and oil content. Nitrogen application also modified the fatty acid composition of the seed oil, as more unsaturated fatty acids were produced under the increasing N application rate treatments than under the control. Moreover, increasing the N application rate generally significantly increased the yields of individual fatty acids as well. Nevertheless, the increased seed oil content and altered fatty acid composition did not affect seed germination traits, as the seed germination potential and rate showed no obvious change among treatments or the control. The height and size of the tobacco plants also increased with the increasing N application rate, which would be beneficial for increasing biomass production for bioenergy. This study shows for the first time the feasibility of increasing the seed and oil yields and modifying the fatty acid composition of tobacco plants by increasing N addition.
Tuber production of calla lily (Zantedeschia elliottiana Spreng cv. Super Gold) was investigated using three size ranges (7-10, 4-7, and <4 mm shoot diameter) of in vitro plantlets acclimated in either pots or soil beds in a protected house. The shoots and tubers of large plantlets exhibited higher rates of dry-matter accumulation than did those of small plantlets. The diameter of tubers harvested from pots ranged from 0.67 to 4.1 cm with median values of 2.7, 2.1, and 1.9 cm for the plants derived from large, medium, and small plantlets, respectively. Plants grown in soil beds, regardless of size, produced larger tubers than did those grown in pots. Tubers >3 cm in diameter developed on 25% and 52% of plants grown in pots and soil beds, respectively. Our results suggest that improved calla lily production could be realized by using larger in vitro plantlets as the source material and growing them in soil beds in a protected house.
White rust (causative pathogen Puccinia horiana) is a destructive disease of commercial chrysanthemum crops. A panel of 19 accessions of commercial chrysanthemum near-relatives (four Ajania species, 11 Chrysanthemum species including five accessions of Chrysanthemum indicum) were screened for their reaction to white rust infection in separate greenhouse trials carried out at two independent sites in eastern China, one in 2010 and the other in 2012. The reaction of the accessions to artificial inoculation ranged from immune to highly susceptible. Accessions of Chrysanthemum indicum, C. yoshinaganthum, C. makinoi var. wakasaense, C. nankingense, C. vestitum, C. lavandulifolium, C. crassum, and Ajania tripinnatisecta were immune, and strong resistance was present in C. japonense, C. × shimotomaii, and A. przewalskii. Most of the accessions behaved similarly in the two trials, but two of the C. indicum accessions produced inconsistent results, each being highly resistant in one trial but susceptible in the other. Because wide crosses are relatively easy to achieve in the chrysanthemum complex, these immune and highly resistant accessions represent promising germplasm for white rust resistance breeding.
Oriental melon (Cucumis melo var. makuwa Makino) is a fruit with distinctive characteristics that is grown in Fuzhou, China. Fusarium wilt disease management remains a major challenge in the production of this fruit. Here, we performed seven field trials at four locations in Fuzhou, Fujian Province, China, to evaluate the control of fusarium wilt and yield of Oriental melons grafted on two Cucurbita rootstocks [Shengyan Tianzhen (SYTZ) and Nanzhen No. 1 (NZ1)]. During the growing seasons of 2008 to 2011, Oriental melons grafted on SYTZ and NZ1 exhibited dramatically reduced incidences of fusarium wilt disease and increased yields compared with nongrafted Oriental melons. Disease was only recorded in Trial 3 at Hongwei (2009), where plants grafted on SYTZ and NZ1 exhibited 1.05% and 1.1% infection, respectively. In the other six field trials, wilting was not observed at all. In comparison, the incidence of the disease in nongrafted Oriental melons ranged from 45.0% to 100.0%. The use of Cucurbita rootstocks improved the qualitative and quantitative carotenoid profiles, increasing lutein levels (12.7 and 10.8 μg·g−1 of fresh weight, respectively) and ζ-carotene and phytofluene amounts in fruit samples from SYTZ- and NZ1-grafted plants. In particular, the Liyu/NZ1 combination significantly increased β-carotene content ≈4-fold compared with nongrafted samples. In conclusion, Cucurbita rootstocks provided acceptable protection of Oriental melon cv. Liyu against fusarium wilt and improved the productivity and quality of fruits.
There are two evolutionary pathways in the genus of Brassica, one is rapa/oleracea lineage and the other is nigra lineage. Based on the morphological characteristics and nuclear RAPD or RFLP markers, genus Raphanus was thought more closely related to nigra lineage than to rapa/oleracea lineage (Song et al., 1990; Thormann et al., 1994). RFLP data of both chloroplast and mitochondria revealed that Raphanus is more closely related to rapa/oleracea lineage (Palmer and Herbon, 1988; Warwick and Black, 1991; Pradhan et al., 1992). We have previously demonstrated that Raphanus sativus is more closely related to nigra lineage using nuclear intergenic spacer between 5S rDNA and internal transcribed spacer region between 18S and 25S rDNA. In this study, we analyzed DNA sequences from different regions of chloroplast and showed that Raphanus sativus was closely related to rapa/oleracea lineage than to nigra lineage. These results suggest that Raphanus sativus is a hybrid between B. rapa/oleracea and B nigra lineages as proposed by Song et al (1990). The split time between these two lineages and the divergent time of Raphanus was also determined based on these chloroplast DNA sequences.
Two complementary DNA fragments encoding expansin genes Ad-EXP1 and Ad-EXP2 were isolated from ripening kiwifruit (Actinidia deliciosa cv. Bruno) by reverse transcription–polymerase chain reaction amplification using a pair of degenerate primers. The homology between these two expansin family members was 50% in nucleotide sequence and 74% in amino acid sequence. It was revealed that Ad-EXP1 and Ad-EXP2 belong to subgroups A and B of an expansin gene family respectively. However, gene expression of these two members shared similar patterns. Both were upregulated by ethylene treatment and downregulated by acetylsalicylic acid treatment. The study suggests that members of both subgroups A and B of the expansin family are involved in kiwifruit fruit ripening.