Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Yang Bin x
  • All content x
Clear All Modify Search
Free access

Yi Kai, Yang Bin, Zhang Min, Gao Ainong, Zhang Jinger, Liu Zhi, Sha Shoufeng, and Xie Chongxin

Free access

Pan-Hui Huang, Wen-Bin Yu, Jun-Bo Yang, Hong Wang, and Lu Lu

Pedicularis rex C. B. Clarke ex Maxim., an endemic species with potential horticultural traits from Himalaya, has a unique cup-like petiole structure and highly infraspecific floral variation among members of the lousewort genus (Orobanchaceae). We developed 13 microsatellite markers from three microsatellite-enriched libraries (AG, AC, and AAG) of P. rex with a modified biotin–streptavidin capture technique. Polymorphism of each locus was assessed in 22 individuals with representation of five populations of P. rex. Number of alleles per locus (A) ranged from two to seven with an average of 4.38. The observed and expected heterozygosities varied from 0.03 to 0.86 and 0.45 to 0.84, respectively. Additionally, among the 13 identified microsatellite markers, 11 of them were successfully amplified in species P. thamnophila, and five of them showed polymorphisms. This study may provide important information for further investigation on the population genetics, introduction, and acclimatization of P. rex and its congeners.

Free access

Meiling Yang, Fang Li, Hong Long, Weiwei Yu, Xiuna Yan, Bin Liu, Yunxiu Zhang, Guorong Yan, and Wenqin Song

As a wild apple species native to central Asia, Malus sieversii (Ledeb.) Roem. is distributed in a wide region covering most of the Tienshan Mountains. Malus sieversii is a useful genetic pool for apple breeding since rich with diversity. In this paper, we first describe the species range of this endangered species. We then describe an in situ reserve that has been established. We also investigated some reproductive characteristics of M. sieversii including pollen germination, seed dormancy, and seed viability. Both stratification and seedcoat removal efficiently released seed dormancy and accelerated seed germination. Pollen germination rate is around 60%. Our data suggest that injurious insects and human activities, rather than reproductive characters, limit the renewal of M. sieversii.

Free access

Hai-Fang Yang, Hye-Ji Kim, Hou-Bin Chen, Jillur Rahman, Xing-Yu Lu, and Bi-Yan Zhou

Litchi trees flower at the apex of terminal shoots. Flowering is affected by the maturity of terminal shoots before growth cessation occurs during the winter. In this study, we focused on changes of flowering in three important cultivars, Guiwei, Feizixiao, and Huaizhi, from Dec. 2012 to Mar. 2013 under natural winter conditions. Flowering rate, carbohydrate accumulation, and expression of the flowering-related genes were determined at three different developmental stages of terminal shoots with dark green, yellowish green and yellowish red leaves, respectively. The results showed that the total soluble sugar and starch contents in the dark green leaves were the highest, whereas those in the yellowish red leaves were the lowest. Trees with dark green terminal shoots had the highest flowering rates, whereas those with yellowish green or yellowish red shoots had relatively lower flowering rates. SPAD was highest in dark green leaves and lowest in yellowish red leaves at the start of the trial. The SPAD value of yellowish red leaves slightly increased but did not reach the levels of the dark green leaves, whereas levels of the other leaf stages remained fairly constant. Expression level of the litchi homolog FLOWERING LOCUS C (LcFLC), the floral inhibitor in yellowish red leaves, increased from 16 Jan., whereas that in dark green leaves declined to a level lower than the yellowish red leaves on 4 Feb. Expression level of the litchi homolog CONSTANTS (LcCO), the floral promoter in dark green leaves, was higher than that of yellowish red leaves before 26 Jan. Expression level of the litchi homolog FLOWERING LOCUS T 2 (LcFT2), encoding florigen, was higher in dark green leaves than in the other two leaf types. Our results suggest that terminal shoots should be matured and leaves should turn green for successful flowering. Mature leaves had higher expression levels of the floral promoter and florigen. In litchi production, leaves of the terminal shoots (potential flowering branches) should be dark green during floral induction and differentiation stages, and winter flushes should be removed or killed.

Free access

Wei Hu, Ju-Hua Liu, Xiao-Ying Yang, Jian-Bin Zhang, Cai-Hong Jia, Mei-Ying Li, Bi-Yu Xu, and Zhi-Qiang Jin

The banana, a typical climacteric fruit, undergoes a postharvest ripening process followed by a burst in ethylene production that signals the beginning of the climacteric period. Postharvest ripening plays an important role in improving the quality of the fruit as well as limiting its shelf life. To investigate the role of glutamate decarboxylase (GAD) in climacteric ethylene biosynthesis and fruit ripening in postharvest banana, a GAD gene was isolated from banana, designated MuGAD. Coincidently with climacteric ethylene production, MuGAD expression as well as the expression of the genes encoding the Musa 1-aminocyclopropane-1-carboxylate synthase (MaACS1) and Musa 1-aminocyclopropane-1-carboxylate oxidase (MaACO1) greatly increased during natural ripening and in ethylene-treated banana. Moreover, ethylene biosynthesis, ripening progress, and MuGAD, MaACS1, and MaACO1 expression were enhanced by exogenous ethylene application and inhibited by 1-methylcyclopropene (1-MCP). Taken together, our results suggested that MuGAD is involved in the fruit ripening process in postharvest banana.

Free access

Ke-peng Che, Chun-yang Liang, Yue-guang Wang, De-min Jin, Bin Wang, Yong Xu, Guo-bing Kang, and Hai-ying Zhang

Amplified fragment length polymorphism (AFLP) analyses were used to assess genetic diversity among 30 genotypes of watermelon [Citrullus lanatus (Thunb.) Mansf.] representing a broad genetic base, including breeding lines and commercial germplasm. Eight AFLP primer combinations selected from 64 primer combinations were polymophic. The polymorphism was 13.0% to 31.9% within the 28 cultivars examined, and 45.3% to 64.2% among all the genotypes. Each genotype could be successfully distinguished based on AFLP scoring. Cluster grouping of accessions based on the AFLP analysis was consistent with that from classification by pedigrees and ecotypes.