Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Yanbin Li x
Clear All Modify Search

The roles of abscisic acid (ABA) and nitric oxide (NO) and the relationship between NO and ABA on chilling resistance and activation of antioxidant activities in walnut (Juglans regia) shoots in vitro under chilling stress were investigated. Walnut shoots were treated with ABA, the NO donor sodium nitroprusside (SNP), ABA in combination with the NO scavenger 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (PTIO), PTIO, SNP in combination with the ABA biosynthesis inhibitor fluridone (Flu), and Flu. Their effects on chilling tolerance, reactive oxygen species (ROS) levels, and the antioxidant defense system were analyzed. The results showed that ABA treatment markedly alleviated the decreases in the maximal photochemical efficiency and survival and the increases in electrolyte leakage and lipid peroxidation induced by chilling stress, suggesting that application of ABA could improve the chilling tolerance. Further analyses showed that ABA enhanced antioxidant defense and slowed down the accumulation of ROS caused by chilling. Similar results were observed when exogenous SNP was applied. ABA in combination with PTIO or PTIO alone differentially abolished these protective effects of ABA. However, treatment with NO in combination with Flu or Flu alone did not affect the SNP-induced protective effect against CI or the activation of antioxidant activities under conditions of chilling stress. In addition, ABA treatment increased the NO content under chilling conditions, which was suppressed by the ABA biosynthesis inhibitor Flu or NO scavenger PTIO. Conversely, SNP application induced the same ABA rise observed in control plants in response to chilling. Taken together, these results suggested that ABA may confer chilling tolerance in walnut shoots in vitro by enhancing the antioxidant defense system, which is partially mediated by NO, preventing the overproduction of ROS to alleviate the oxidative injury induced by chilling.

Free access

Ventilation and soil moisture influence greenhouse cultivation. Experiments were conducted at Xinxiang Irrigation Research Base of the Chinese Academy of Agricultural Sciences, Henan Province, China, to identify how ventilation and irrigation affected the greenhouse microenvironment. To develop ventilation and irrigation protocols that increase crop yield and improve the quality of drip-irrigated tomatoes grown in the greenhouse, three ventilation modes (T1, T2, and T3) were developed by opening vents in different locations in a completely randomized pattern. T1 had open vents on the north wall and roof of the greenhouse. T2 had open vents on the north and south walls and the roof. T3 had open vents on the north and south walls. Three irrigation treatments (W1, W2, and W3) were designed based on the accumulated water surface evaporation (Ep ) of a standard 20-cm evaporation pan. The irrigation quantities were 0.9×Ep (W1), 0.7×Ep (W2), and 0.5×Ep (W3). The spatial and temporal distributions of temperature and humidity were analyzed for different combinations of ventilation and irrigation to identify their effects on tomato yield and fruit quality. Major results were as follows: 1) In addition to solar radiation, ventilation had an important influence on Ep and, on a daily scale, ventilation had a significant effect on Ep (P < 0.05). 2) Ventilation had a significant effect on indoor wind speed, but the effect varied during different growth stages. During the flowering and fruit setting stage, wind speed for T2 significantly differed from those of T1 and T3 (P < 0.01). During the harvest stage, the three ventilation treatments had significantly different effects (P < 0.01). A correlation analysis showed high correlation between T2 wind speed and T3 wind speed (R = 0.831), but low correlation between T2 wind speed and T1 wind speed (R = 0.467). 3) The effect of ventilation on greenhouse humidity and temperature was greater than the effect of irrigation. The differences in air temperature among various combined treatments of ventilation and irrigation were significant for the flowering and fruiting stages (P < 0.05), but they were not significant for the late harvest stage (P > 0.05). There were significant differences in humidity on sunny days (P < 0.01), but no significant differences on cloudy or rainy days (P > 0.05). Air temperature at 2 m was greater than canopy temperature, but humidity at 2 m was less than that at canopy level. 4) Irrigation water quantity was positively correlated with tomato yield and negatively correlated with the fruit quality indicators total soluble solids, vitamin C content, organic acid content, and soluble sugars content. Ventilation had an effect primarily during the harvest period; it had no significant effect on yield (P > 0.05). However, it had a significant effect on vitamin C content and the sugar:acid ratio (P < 0.01). The combination treatment of T2W2 is recommended as the optimal treatment for greenhouse tomatoes using drip irrigation to produce an optimal combination of crop yield and fruit quality. This study provides theoretical and technical support for the improvement of greenhouse climate control by optimizing greenhouse ventilation and irrigation techniques to promote tomato yield and improve fruit quality.

Open Access

Head splitting resistance (HSR) in cabbage is an important trait closely related to appearance, yield, storability, and mechanical harvestability. In this study, a doubled haploid (DH) population derived from a cross between head splitting-susceptible inbred cabbage line 79-156 and resistant line 96-100 was used to analyze inheritance and detect quantitative trait loci (QTLs) for HSR during 2011–12 in Beijing, China. The analysis was performed using a mixed major gene/polygene inheritance method and QTL mapping. This approach, which uncovered no cytoplasmic effect, indicated that HSR can be attributed to additive-epistatic effects of three major gene pairs combined with those of polygenes. Major gene and polygene heritabilities were estimated to be 88.03% to 88.22% and 5.65% to 7.60%, respectively. Using the DH population, a genetic map was constructed with simple sequence repeat (SSR) markers anchored on nine linkage groups spanning 906.62 cM. Eight QTLs for HSR were located on chromosomes C4, C5, C7, and C9 based on 2 years of phenotypic data using both multiple-QTL mapping and inclusive composite interval mapping. The identified QTLs collectively explained 37.6% to 46.7% of phenotypic variation. Three or four major QTLs (Hsr 4.2, 7.2, 9.3, and/or 9.1) showing a relatively larger effect were robustly detected in different years or with different mapping methods. The HSR trait was shown to have a complex genetic basis. Results from QTL mapping and classical genetic analysis were consistent. Our results provide a foundation for further research on HSR genetic regulation and molecular marker-assisted selection (MAS) for HSR in cabbage.

Free access