Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Y. Song x
Clear All Modify Search

Potatoes with hollow heart or brown center are considered to be of poor quality for both fresh and processing markets. A reliable nondestructive method, which can distinguish affected and normal potatoes, is described here. A Varian 4.7 Tesla, 33-cm horizontal-bore spectroscopy/imaging system was used to obtain nuclear magnetic resonance (NMR) images of potatoes. A two-dimensional multi-slice spin-echo imaging technique was used to acquire the cross-sectional images along the longitudinal direction. The echo time was 35 msec and the repetition time was 1.2 sec. A total of 13 slice images were taken for each potato. A one-dimensional projection technique was also performed to evaluate the possibility of using fast-scan method. The brown center showed high intensity in long echo scans due to its longer TL relaxation time. A suberin-like layer resembling the periderm developed on the cavity wall of hollow heart causing a tan or dark brown coloration. This cavity wall also appeared in high intensity on the image. The affected potatoes can easily be sorted out using this nondestructive NMR imaging technique.

Free access

Measurements of soil water content near the soil surface often are required for efficient turfgrass water management. Experiments were conducted in a greenhouse to determine if the dual-probe heat-pulse (DPHP) technique can be used to monitor changes in soil volumetric water content (θv) and turfgrass water use. `Kentucky 31' Tall fescue (Festuca arundinacea Schreb.) was planted in 20-cm-diameter containers packed with Haynie sandy loam (coarse-silty, mixed, calcareous, mesic Typic Udifluvents). Water content was measured with the DPHP sensors that were placed horizontally at different depths between 1.5 and 14.4 cm from the surface in the soil column. Water content also was monitored gravimetrically from changes in container mass. Measurements started when the soil surface was covered completely by tall fescue. Hence, changes in θv could be attributed entirely to water being taken up by roots of tall fescue. Daily measurements were taken over multiple 6- or 7-day drying cycles. Each drying cycle was preceded by an irrigation, and free drainage had ceased before measurements were initiated. Soil water content dropped from ≈0.35 to 0.10 m3·m-3 during each drying cycle. Correlation was excellent between θv and changes in water content determined by the DPHP and gravimetric methods. Comparisons with the gravimetric method showed that the DPHP sensors could measure average container θv within 0.03 m3·m-3 and changes in soil water content within 0.01 m3·m-3.

Free access