Search Results

You are looking at 1 - 10 of 14 items for

  • Author or Editor: Y. -J. Kim x
Clear All Modify Search

Fruit of the cultivated strawberry (Fragaria ×ananassa Duchesne ex Rozier) are a good source of natural antioxidants, which play an important role in protecting human health. Antioxidant levels vary considerably among strawberry genotypes. The cultivated strawberry is a hybrid of two very different wild progenitor species: F. virginiana Mill. and F. chiloensis (L.) Mill. The progenitor species are valued by strawberry breeders as sources of novel traits, but have not been evaluated for antioxidant capacity or levels of antioxidant compounds. The objectives of this study are 1) to evaluate the antioxidant contents and antioxidant activities in representatives of F. virginiana and F. chiloensis in comparison with representatives of the cultivated strawberry species (F. ×ananassa), 2) to determine which strawberry compounds are most closely correlated with antioxidant capacity among these three species, and 3) to identify wild strawberry genotypes with high antioxidant activity and bioactive compounds for use in cultivar development. Fruit of 19 accessions from each of the three species, cultivated strawberry plus the two progenitor species (F. ×ananassa, F. virginiana, and F. chiloensis), were evaluated for levels of antioxidant capacity (oxygen radical absorbance capacity), total phenolics, total anthocyanins, ellagic acid, quercetin 3-glucoside plus quercetin 3-glucuronide, kaempferol 3-glucoside, kaempferol 3-rutinoside, p-coumaryl–glucose, pelargonidin 3-glucoside, pelargonidin 3-glucoside–succinate, cyanidin 3-glucoside, and cyanidin 3-glucoside–succinate. Fruit of the 13 accessions tested from the wild progenitor species F. virginiana had significantly higher antioxidant capacity, total phenolics, and total anthocyanins than did the fruit of three accessions tested from the cultivated strawberry F. ×ananassa, or the three accessions tested from the other wild progenitor species (F. chiloensis), and will be valuable as a source of parent material for developing more nutritious strawberry cultivars. The high correlation with antioxidant capacity, relative efficiency, and lack of genotype-by-year interaction in this study suggests that the measurement of total phenolics may be the better assay to use for the later selection stages in a strawberry cultivar development program. Of the evaluated F. virginiana accessions, NC 95-19-1, JP 95-1-1, CFRA 0982, NC 96-5-3, and RH 30 fruit were highest in antioxidant capacity and should prove useful toward development of strawberry cultivars with high antioxidant capacities.

Free access

Although somatic embryogenesis in vitro has been carried out successfully in a number of plants, a limiting factor in many somatic embryogenic systems is that plantlet regeneration is not obtainable or restricted to low frequencies. We have developed a repetitive, high frequency somatic embryogenic system in pecan (Carya illinoensis) and have identified effective treatments for improved somatic embryo conversion. A 6 to 10 week cold treatment followed by a 5 day desiccation, promoted enhanced root germination and extension, and epicotyl elongation. Light and transmission electron microscopic evaluations of somatic embryo cotyledon development will be presented and related to conversion enhancing treatments and their possible roles in embryo maturation.

Free access

Although somatic embryogenesis in vitro has been carried out successfully in a number of plants, a limiting factor in many somatic embryogenic systems is that plantlet regeneration is not obtainable or restricted to low frequencies. We have developed a repetitive, high frequency somatic embryogenic system in pecan (Carya illinoensis) and have identified effective treatments for improved somatic embryo conversion. A 6 to 10 week cold treatment followed by a 5 day desiccation, promoted enhanced root germination and extension, and epicotyl elongation. Light and transmission electron microscopic evaluations of somatic embryo cotyledon development will be presented and related to conversion enhancing treatments and their possible roles in embryo maturation.

Free access

Zinc deficiency is a widespread nutritional disorder in plants and occurs in both temperate and tropical climates. In spite of its physiological importance, cytological and ultrastructural changes associated with zinc deficiency are lacking, in part because zinc deficiency is difficult to induce. A method was developed to induce zinc deficiency in pecan (Carya illinoinensis (Wangenh.) C. Koch) using hydroponic culture. Zinc deficiency was evaluated in leaves using light and electron microscopy. Zinc deficiency symptoms varied with severity ranging from interveinal mottling, overall chlorosis, necrosis, and marginal curving. Zinc deficient leaves were thinner, and palisade cells were shorter, wider, and had more intercellular spaces than zinc sufficient leaves. Cells in zinc deficient leaves had limited cytoplasmic content and accumulated phenolic compounds in vacuoles. Extensive starch accumulation was observed in chloroplasts. This work represents the first detailed microscopic evaluations of zinc deficiency in leaves, and provides insight on how zinc deficiency affects leaf structure and function.

Free access

It has been shown that perennial woody plants exhibit marked seasonal changes in nutrient content, carbon metabolism, and organ development. A knowledge of seasonal nutrient allocation and temporal accumulation patterns can be useful in the development of fertilization regimes that reflect the biology of a tree crop. Maintenance of optimum leaf nutrient status is an important priority in pecan cultural practice. However, a systematic evaluation of nutrient resorption is lacking in pecan. In this work, seasonal changes in nutrients and carbohydrates were evaluated in pecan trees grown under orchard conditions. In addition, resorption efficiencies of eight pecan cultivars were evaluated. Significant levels of resorption were observed in all essential elements, but cultivar differences were not significant. Seasonal patterns of nutrient and carbohydrate content in leaf, stem, and shoot tissue, will be presented as well as a structural evaluation of abscission zone formation.

Free access

Effects of reduced osmotic potential on somatic embryos of celery (Apium graveolens L.) were studied in an attempt to understand and improve their tolerance to partial desiccation. Embryos responded similarly to application of high osmoticum (384 mOs/kg H2O vs. 190 mOs/kg H2O in the control), achieved either by manipulation of sucrose or polyethylene glycol concentrations (PEG). Treatments of high osmotic concentration applied during the last 2 days of the embryo production cycle increased embryo survival and conversion after partial desiccation. The most striking effect of the high osmotic concentrations was the 4-fold increase in proline, while a 2-fold increase was obtained with 1 μm ABA alone. Application of high osmotica decreased reducing sugars, increased sucrose, but did not affect starch content of embryos; of these responses, only the change in sucrose was similar to that induced by ABA. Osmotic treatments did not affect total fatty acid content in the embryos compared to the 2-fold increase induced by ABA. Chemical name used: abscisic acid (ABA).

Free access

Fruit extracts from 17 to 18 representatives of three strawberry species [Fragaria virginiana Mill., F. chiloensis (L.) Mill., and F. ×ananassa Duchesne ex Rozier] were tested for the ability to inhibit proliferation of A549 human lung epithelial cancer cells. The fruit extracts also were tested for activities against free radicals, (peroxyl radicals, hydroxyl radicals, singlet oxygen, and superoxide radicals), the activities of antioxidant enzymes [glutathione peroxidase (EC 1.11.1.9), superoxide dismutase (EC 1.15.1.1), guaiacol peroxidase (EC 1.11.1.7), ascorbate peroxidase (EC 1.11.1.11), monodehydroascorbate reductase (EC 1.6.5.4), dehydroascorbate reductase (EC 1.8.5.1), and glutathione reductase (EC 1.6.4.2)], and the activities of nonenzyme antioxidant components, ascorbic acid and glutathione. Correlations between the proliferation of cancer cells and these antioxidant activities were calculated. At the species level, F. virginiana fruit extract inhibited the proliferation of A549 human lung epithelial cancer cells to a significantly greater extent (34% inhibition) than the extracts from fruit of either F. chiloensis (26%) or F. ×ananassa (25%) (P < 0.0001). Extracts from fruit of F. virginiana also had significantly greater antioxidant activities and higher activities of antioxidant enzymes and nonenzyme components than did extracts from the other two species. Among individual genotypes, there was a high positive correlation between antiproliferation of A549 cancer cells, antioxidant activities against free radicals, activities of antioxidant enzymes, and activities of nonenzyme components. Although all fruit extracts from all the strawberry genotypes inhibited proliferation of A594 cancer cells, fruit extracts from seven F. virginiana genotypes showed significantly greater antiproliferative effects than any of the F. ×ananassa or F. chiloensis genotypes. These genotypes, CFRA 0982, JP 95-1-1, NC 95-19–1, RH 30, NC 96-48-1, JP 95-9-6, and LH 50-4, may be especially useful in developing cultivars with greater anticancer potential.

Free access

Effects of autoclaving volume, gelling agent (Bactoagar, Gel-gro, Phytagar), and basal salts [Murashige and Skoog (MS); Woody Plant Medium (WPM); Gamborg B5 (GB)] on gel strength and pH of tissue culture media were tested. Gel strength was significantly affected by gelling agent and basal medium. MS media were generally softer than comparable WPM or GB media. As the vessel volume during autoclaving decreased, gel strength significantly decreased with Phytagar and Bactoagar gelling agents; Gel-gro had greater gel strength at the intermediate volume of medium autoclave. In all cases, autoclaving resulted in a pH decrease of 0.2 to 0.5 pH units. Lower pH values were associated with softer gels. The type of gelling agent did not greatly affect the postautoclave pH; mean values among gelling agents were within 0.05 pH units. Postautoclave pH of MS medium was lower than that of WPM or GB. This study verifies the need to observe uniform sterilization protocols to maintain consistency in the chemical and physical properties of media.

Free access

As a plant nutrient, nitrogen is the element in highest demand in terms of quantity and makes up about 2% to 3% of plant dry matter. In this study, we evaluated the effect of nitrogen source on plant growth and nutrient uptake in pecan (Carya illinoensis). Seedlings were hydroponically grown under three nitrogen nutrient regimes where the ratio of nitrate: ammonium was varied, i.e., 3:1, 1:1, and 1:3. High ammonium nutrition had an inhibiting effect on seedling growth. Plants grown under 1:3 (nitrate: ammonium) exhibited significantly lower biomass, decreased root/shoot ratio, and lower specific leaf weight than other treatments. Total nitrogen uptake on a dry weight basis was highest in the high ammonium treatment. In the equal molar treatment (1:1 nitrate: ammonium), plants exhibited preferential uptake of ammonium-form nitrogen. Ammonium-form nitrogen is generally used in pecan orchard practice. Our data suggest that further studies evaluating the effects of nitrogen source are warranted to determine if similar detrimental effects on pecan growth occur in the field. Such studies would be useful for optimizing current fertilization practices.

Free access
Authors: , , and

The development of genetic transformation systems has led to remarkable progress in the area of plant molecular biology. This has included the introduction of useful traits, such as resistance to viruses, herbicides, and insects. Transformed plant cells can be selected, using chimeric genes that confer resistance to toxic drugs, such as kanamycin, hygromycin, streptomycin, gentamycin, and bleomycin. Expression of these chimeric genes in the transformed cells confers the ability to survive and proliferate on the selective medium, while non-transformed cells die. In this study, we report a simple and efficient system to regenerate Chinese cabbage plants and study of the effects of plant growth regulators, AgNO3, initial dark treatment, various antibiotics, and herbicide on shoot induction from hypocotyl or cotyledon of Chinese cabbage. Shoots were induced at various combinations of naphtalene acetic acid (NAA) and benzyladenine (BA) levels. The best combination of plant growth regulators was 2.0 mg/L NAA and 1.0 mg/L BA for cotyledon, and 1.0 mg/L NAA and 5.0 mg/L BA for hypocotyl. The experiment investigating the effect of AgNO3 demonstrated that 16.7 mg/L AgNO3 was effective for inducing shoot regeneration from both of explants. Three to five days of initial dark treatments had significant effects for increasing the number of regenerated shoots; however, different growth regulator combinations showed various responses to duration of dark treatments. The effects of kanamycin, hygromycin, cefatoxime, carbenicillin and phosphinothricin (PPT) on shoot induction from cotyledon and hypocotyl were tested. Shoot induction was completely inhibited by kanamycin at 10 mg/L, hygromycin at 5 mg/L, PPT at 5 mg/L or higher, but not by carbenicillin and cefatoxime.

Free access