Search Results

You are looking at 1 - 10 of 28 items for

  • Author or Editor: Xunzhong Zhang x
Clear All Modify Search

Superoxide dismutase (SOD) activity is closely associated with stress tolerance of creeping bentgrass [Agrostis stoloniferous L. var. palustris (Huds.) Farw (syn. A. palustris Huds.)]. This study was conducted to investigate the influence of two plant growth regulators (PGRs) on the endogenous antioxidant SOD level and photochemical activity in `Penncross' creeping bentgrass grown under two fertilizer regimes. Mature `Penncross' was treated monthly with TE at 0.44 g a.i./100 m2 and PPC at 3.37 g a.i./100 m2 from May through November at the Virginia Tech Turfgrass Research Center, Blacksburg, Va. Foliar application of TE and PPC increased SOD activity, photochemical activity, and Fm730/Fm690 ratio of creeping bentgrass under the two fertilization regimes as well as when the grass was exposed to a low soil moisture environment. TE reduced clipping weight consistently regardless of the fertilization regime. In contrast, PPC increased clipping weight slightly. Both TE and PPC significantly reduced Dollar spot disease (Sclerotinia homoeocarpa Bennett) under both high and low fertilization regimes. No significant fertilization × PGR interactions for SOD, photochemical activity of PS II, and Fm730/Fm690 were observed in well-watered or drought stressed bentgrass. Improvement in stress tolerance of creeping bentgrass by the PGRs appears to be associated partially with an increase of endogenous SOD activity. Chemical names used: trinexapac-ethyl (TE); propiconazole (PPC).

Free access

Ultraviolet-B (280–320 nm) radiation is one of the major factors causing quality decline of transplanted turfgrass sod. Information on physiological parameters for assessing turfgrass tolerance to ultraviolet-B stress is lacking. The objective of this study was to evaluate ultraviolet-B tolerance of four cool-season turfgrass species and varieties using selected physiological parameters under artificial ultraviolet-B radiation stress. The physiological performance of 18 varieties of tall fescue (TF; Festuca arundinacea Schreb.), chewings fescue (CF; Festuca rubra L. ssp. commutata Gaud.), perennial ryegrass (PRG; Lolium perenne L.), and kentucky bluegrass (KBG; Poa pratensis L.) were subjected to continuous, artificial ultraviolet-B radiation (70 μmol·m−2·s−1) for 10 days. Visual quality ratings of TF, CF, PRG, and KBG measured at Day 10 were reduced by 49%, 18%, 51%, and 74%, respectively, relative to that at trial initiation. Ultraviolet-B tolerance in CF was the greatest, KBG was the least, and TF and PRG were intermediate. ‘Ebony’ was the most ultraviolet-B-tolerant TF variety, whereas ‘BlueTastic’, ‘BlueRiffic’, and ‘747’ had greater ultraviolet-B tolerance than the other four KBG varieties. No differences were observed in ultraviolet-B tolerance between varieties in either CF or PRG. The ultraviolet-B-tolerant species had less electrolyte leakage (EL), greater canopy photochemical efficiency (PEc), and relatively smaller and slower upregulation in antioxidant superoxide dismutase (SOD) activity relative to ultraviolet-B-sensitive ones. The results suggest that EL, PEc, and SOD may be used as physiological parameters in selecting ultraviolet-B-tolerant species and varieties for sod production and lawn establishment.

Free access
Authors: , , , and

Ethephon [ETH (2-chloroethylphosphonic acid, an ethylene-releasing compound)] has been used as a plant growth regulator in turfgrass management. The aim of the study was to assess the effects of ETH seed treatment on drought tolerance of kentucky bluegrass (Poa pratensis) seedlings. Seeds of two kentucky bluegrass cultivars, Midnight and Nuglade, were exposed to ETH treatment or untreated as controls. Seedlings were then exposed to two water regimes: well-watered conditions and polyethylene glycol (PEG)–induced drought conditions. ETH-treated plants exhibited better turf performance relative to the untreated control under PEG-stressed conditions illustrated by higher relative water content (RWC) and lower lipid peroxidation and lower electrolyte leakage (EL). In both cultivars, ETH treatment increased enzyme activity of ascorbate peroxidase (APX), peroxidase (POD), and catalase (CAT); proline content; and soluble protein content under PEG-induced drought conditions. The results suggest that ETH seed treatment can improve drought tolerance in kentucky bluegrass seedlings.

Full access

Drought stress is one of the major limiting factors for plant growth and development. The mechanism of drought tolerance has not been well understood. This study was designed to investigate proline and antioxidant metabolism associated with drought tolerance in transgenic tobacco (Nicotiana tabacum) plants overexpressing the OjERF gene relative to wild-type (WT) plants. The OjERF gene was isolated from mondo grass (Ophiopogon japonicus). The OjERF gene, driven by the CaMV35S promoter, was introduced into tobacco through agrobacterium (Agrobacterium tumefaciens)-mediated transformation. Five transgenic lines were regenerated, of which transgenic Line 5 (GT5) and Line 6 (GT6) were used to examine drought tolerance in comparison with WT plants in a growth chamber. Drought stress caused an increase in leaf malondialdehyde (MDA) and electrolyte leakage (EL), proline content, superoxide dismutase (SOD), and catalase (CAT) activity in both transgenic lines and WT plants. However, the transgenic lines had lower MDA content and EL and higher proline content, SOD and CAT activity relative to WT under drought stress. The activities of SOD and CAT were also greater in the transgenic lines relative to WT plants under well-watered conditions (Day 0). The OjERF activated the expression of stress-relative genes, including NtERD10B, NtERD10C, NtERF5, NtSOD, and NtCAT1 in tobacco plants. The results of this study suggest that the OjERF gene may confer drought stress tolerance through upregulating proline and antioxidant metabolism.

Free access

Recent advances in bermudagrass [Cynodon dactylon (L.) Pers. var. dactylon] breeding and cultural management practices have enabled its use as a sports surface in U.S. Department of Agriculture cold hardiness zones 5 and 6. Use of these more cold-hardy bermudagrass cultivars further into transition- and cool-season zones increases the probability of freezing injury and increases the need for an improved understanding of physiological responses to chilling and freezing temperatures. Abscisic acid (ABA) has been shown to increase during cold acclimation (CA) and play a role in dehydration tolerance. This study investigated changes in ABA metabolism and dehydrin expression during CA and their association with freezing tolerance in four bermudagrass cultivars. Two cold-tolerant (‘Patriot’ and ‘Riviera’) and two relatively cold-sensitive (‘Tifway’ and ‘Princess’) cultivars were either subjected to CA at 8 °C day/4 °C night with a light intensity of 250 μmol·m−2·s−1 over a 10-h photoperiod for 21 days or maintained at 28 °C day/24 °C night over a 12-h photoperiod. In a separate study, exogenous ABA at 0, 50, 100, and 150 μm was applied to ‘Patriot’ bermudagrass without CA. ABA content in leaf and stolon tissues increased substantially during the first week of CA and remained relatively stable thereafter. ‘Patriot’ and ‘Riviera’ had greater ABA content and less stolon electrolyte leakage (EL) relative to ‘Tifway’ and ‘Princess’. Expression of a 25 kDa dehydrin protein increased during CA in all four cultivars. A significant correlation was found between ABA content and freezing tolerance. Exogenously applying ABA to ‘Patriot’ at 50, 100, and 150 μm significantly increased endogenous ABA content and the 25 kDa dehydrin expression and reduced stolon EL. The results suggest that alteration of ABA metabolism during CA is closely associated with freezing tolerance. Selection and use of cultivars with substantial accumulation of ABA and certain dehydrins during CA or in response to exogenous ABA could improve bermudagrass persistence in transition zone climates.

Free access

Biosolids are valued as a source of plant nutrients, soil organic matter, and biologically active substances. This greenhouse study was designed to examine if application of biosolids can improve plant drought tolerance by affecting nitrogen (N) and hormone metabolism as well as root growth in kentucky bluegrass (Poa pratensis L.; KBG). The three treatments, which provided N rates equivalent to 75 mg plant-available N/kg soil, included: 1) biosolids at 1× agronomic (Ag) N rate (75 mg N/kg soil completely provided with biosolids); 2) biosolids at 0.5× Ag N rate (37.5 mg N/kg soil provided with biosolids and 37.5 mg N/kg soil provided with NH4NO3); and 3) control (75 mg N/kg soil completely provided with NH4NO3). The treated KBG was grown under either well-watered (90% container capacity) or drought stress (≈25% container capacity) conditions. Biosolids application improved turf quality and delayed leaf wilting under drought stress. The grass treated with biosolids at 1× N rate had higher leaf proline and amino acid content and greater nitrate reductase activity than the control under drought stress. Biosolids treatments also increased leaf and soil indole-3-acetic acid (IAA) content. Moreover, biosolids at 1× N rate increased root length density by 23% compared with the control under drought stress. The results of this study suggest that biosolids may enhance plant drought tolerance by improving N and hormone metabolism and root growth in KBG.

Free access

Tall fescue is an important cool-season grass widely used for forage and turf, and its genotypic variation for morphological traits has not been well documented. One hundred and fifteen tall fescue accessions, including 25 commercial cultivars, were divided into five groups based on their origination. The morphological traits, including plant height, spike length, pulvinus distance, spikelet count, branch count per spike, spike count per plant, and spike weight in different accessions were determined under field conditions in 2013 and 2014. There was significant genotypic variation in morphological traits among the 115 tall fescue accessions. Wild accessions exhibited a greater variation in the morphological traits than commercial cultivars. Close correlations were found among plant height, spike length, pulvinus distance, and spikelet count. The results of this suggest plant height, spike length, pulvinus distance, and spikelet count could be used as key morphological traits for evaluating all fescue germplasm effectively.

Free access

Turfgrass performance under drought stress is impeded by plant water deficit and oxidative damage, which might be improved by the external application of osmoprotectants. Creeping bentgrass (Agrostis stolonifera L.) is a valuable species for low-cut golf surfaces as a result of its high density and fine texture. However, weak tolerance to drought stress is a primary shortcoming. In this study, the effect of exogenous glycinebetaine (GB) pretreatment on mitigating the damage from drought stress in creeping bentgrass cultivar ‘T-1’ was evaluated. Pieces of creeping bentgrass sod were subjected to four treatments: 1) well-watered control, 2) well watered and sprayed with 100 mm GB, 3) drought stress, and 4) drought stress and sprayed with 100 mm GB. Drought stress resulted in a remarkable decrease in turf quality (TQ), relative water content (RWC), and chlorophyll content, with significant increases in superoxide anion content (O2 ), malondialdehyde (MDA) content, superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activity. In contrast, pretreatment with 100 mm GB decreased the O2 and MDA content in water-stressed plants, and increased turf quality, chlorophyll content, SOD, CAT, and POD activity. Meanwhile, the expression level of the psbA, SAMS4, CMO, and ACS1 genes in leaf samples collected during the drought-stress stage was elevated in GB pretreatment. Notably, SAMS4 gene expression in GB pretreatment was significantly greater than in the untreated GB groups subjected to water stress. These results suggested that GB could mitigate the adverse effect of water stress on creeping bentgrass. The amelioration related strongly to the maintenance of the antioxidant enzyme system, accumulated endogenous compatible metabolites, and the elevation of gene expression levels. These findings lead us to conclude that GB pretreatment could be used as an ameliorative agent for creeping bentgrass against the deleterious effects of water stress.

Free access

Zoysiagrass (Zoysia spp.), a warm-season turfgrass species, experiences freezing damage in many regions. The mechanisms of its cold acclimation and freezing tolerance have not been well understood. This study was designed to investigate effects of cold acclimation treatment on leaf abscisic acid (ABA), cytokinin (transzeatin riboside (t-ZR), and antioxidant metabolism associated with freezing tolerance in zoysiagrass (Zoysia japonica). ‘Chinese Common’ zoysiagrass was subjected to either cold acclimation treatment with temperature at 8/2 °C (day/night) and a photosynthetically active radiation (PAR) of 250 µmol·m−2·s−1 over a 10-hour photoperiod or normal environments (temperature at 28/24 °C (day/night), PAR at 400 µmol·m−2·s−1 and 14-hour photoperiod) for 21 days in growth chambers. Cold treatment caused cell membrane injury as indicated by increased leaf cell membrane electrolyte leakage (EL) and malondialdehyde (MDA) content after 7 days of cold treatment. Cold treatment increased leaf ABA and hydrogen peroxide content and reduced t-ZR content. Leaf superoxide dismutase (SOD), ascorbate peroxidase (APX) activity, and proline content increased, whereas catalase (CAT) and peroxidase (POD) activity declined in response to cold treatment. Cold treatment increased freezing tolerance as LT50 declined from −4.8 to −12.5 °C. The results of this study indicated that cold acclimation treatment might result in increases in ABA and H2O2, which induce antioxidant metabolism responses and improved freezing tolerance in zoysiagrass.

Free access

Heat stress is a major limiting factor for growth of cool-season perennial grass species, and mechanisms of heat tolerance have not been well understood. This study was designed to investigate antioxidant enzyme and hormone metabolism responses to heat stress in two kentucky bluegrass (Poa pratensis L.) cultivars contrasting in heat tolerance. The plants were subjected to 20/20 °C [day/night (control)] or 38/30 °C [day/night (heat stress)] for 28 days in growth chambers. Heat stress increased leaf electrolyte leakage (EL) and malondialdehyde (MDA) with heat-tolerant cultivar EverGlade exhibiting lower levels of EL and MDA relative to heat-sensitive cultivar Kenblue under heat stress. Superoxide dismutase (SOD) and catalase (CAT) activity increased and then declined during 28 days of heat stress. Peroxidase (POD) and ascorbate peroxidase (APX) activity declined and then increased during heat stress. ‘EverGlade’ had greater activities of SOD, CAT, POD, and APX relative to ‘Kenblue’ under heat stress. In addition, ‘EverGlade’ had two additional SOD isozymes and three additional POD isozymes relative to ‘Kenblue’ under heat stress. Leaf abscisic acid (ABA) increased in response to heat stress. Leaf indole-3-acetic acid (IAA) increased and then declined during heat stress. ‘OverGlade’ had higher ABA and IAA content relative to ‘Kenblue’. At the end of heat stress, leaf IAA and ABA content were 27.8% and 73% higher in ‘EverGlade’ relative to ‘Kenblue’, respectively. The results indicated that antioxidant enzymes and the hormones (ABA and IAA) were associated with kentucky bluegrass heat tolerance. Selection and use of cultivars with higher IAA and ABA content and greater antioxidant enzyme activities may improve kentucky bluegrass growth and quality under heat stress.

Free access