Search Results
Carrots, broccoli, and lettuce were treated with air, continuous ethylene, 1-methylcyclopropene (MCP), or a combination of MCP before continuous ethylene. The respiration rate of ethylene-treated carrots reached a maximum 4 days after treatment and remained higher compared to controls through 16 days at 10 °C. Ethylene treatment also resulted in an accumulation of isocoumarin. Treating carrots with MCP before ethylene exposure inhibited the increase in respiration rate and accumulation of isocoumarin. MCP treatment reduced broccoli respiration and yellowing compared to controls, indicating that ethylene is involved in the senescence of broccoli. Ethylene exposure stimulated respiration and yellowing of broccoli. Treatment with MCP before continuous ethylene exposure negated the ethylene effects. MCP also inhibited respiration and russet spotting of lettuce stored in ethylene-containing atmospheres. The results indicate MCP can be used to block ethylene-induced isocoumarin accumulation (associated with bitterness) in carrots, yellowing in broccoli, and russet spotting in lettuce.
Broccoli (Brassica oleracea L. var. italica Plen) was held for 12 days at 10 °C in air or in ethylene (1 μL·L–1), with or without prior exposure to MCP (1 μL·L–1) for 12 hours. In a second experiment, the effects of concentration of MCP, prior to exposure to ethylene, were evaluated. Treatment with MCP reduced whereas exposure to ethylene stimulated respiration and yellowing. Treatment with MCP before continuous exposure to ethylene negated the effects of ethylene. The inhibitory effect of MCP on respiration of broccoli exposed to 1 μL·L–1 ethylene was concentration-dependent, while the effect on yellowing was not. The results indicate that the yellowing of broccoli is mediated by ethylene action, and that MCP treatment inhibits yellowing and reduces respiration, even when broccoli is exposed to ethylene. Chemical name used: 1-methylcyclopropene (MCP).
`Bartlett' and `d'Anjou' pear fruit were treated after harvest with MCP at 0, 0.01, 0.1 or 1 mL•L-1 and then stored at 1 °C. After storage, half of the fruit was continuously exposed to 10 mL•L-1 ethylene for 7 days in a flow-through system at 20 °C. A treatment concentration effect was evident for both respiration and ethylene production, all MCP concentrations reduced respiration and ethylene production by `d'Anjou' and `Bartlett' fruit compared to controls. Fruit quality changes in `d'Anjou' and `Bartlett' fruit were delayed by MCP treatment. Firmness and titratable acidity were higher through 4 months storage for `Bartlett' fruit treated at the two higher MCP rates. After 2 months, `Bartlett' fruit treated at the two higher MCP rates remained green, but, after 4 months, all fruit were yellow. Loss of firmness and titratable acidity was also reduced following MCP treatment of `d'Anjou' fruit. Yellowing of `d'Anjou' fruit was prevented by MCP treatment, even when fruit were exposed to ethylene after removal from storage. Poststorage ethylene exposure did not overcome the effects of MCP. Development of superficial and senescent scald was prevented by MCP treatment.
Airborne methyl jasmonate (MJ) can modulate apple fruit ripening, including the degreening process. Degreening of `Fuji' and `Golden Delicious' apples by jasmonates [jasmonic acid (JA) and MJ] in aqueous solution was investigated. JA and MJ applied by dipping apples in solutions of jasmonates for 2 min enhanced degreening during ripening at 20C. MJ was more effective at promoting degreening compared to JA. The minimum concentration of jasmonates required to promote significant degreening during the 2-week ripening period was 1 mM. Degreening of jasmonate-treated apples ripened at 4C progressed slower compared to apples ripened at 20°C. JA stimulated apple fruit ethylene production at concentrations as low as 10 μM. Jasmonates at 1 or 10 mM were more effective at accelerating the degreening process compared to 0.35 or 3.5 mM ethephon. Firmness, soluble solids content, and titratable acidity of `Fuji' apples were not significantly affected by jasmonate treatments. Peel injury occurred on apples treated with 10 mM JA or 3.5 mM ethephon.
Enclosing `Fuji' apple (Malus ×domestica Borkh.) fruit in paper bags 2 months after full bloom delayed the increase in internal ethylene concentration at the onset of fruit ripening, and increased the respiration rate early in the bagging period. Bagging delayed and reduced red color development, especially on the blush side, but did not affect fruit resistance to gas diffusion. External surface color changed significantly within the first 4 days after bags were removed. Exclusion of UV-B from sunlight by Mylar film after paper bag removal impaired red color development. Bagging during fruit development increased superficial scald but eliminated stain during cold storage. Exposure to sunlight for 19 or 20 days before harvest reduced scald incidence in comparison with leaving bags on until harvest.
The efficacy of the ethylene action inhibitor 1-methylcyclopropene (1-MCP) applied in water to slow ripening of `Golden Delicious' [Malus sylvestris var. domestica (Borkh.) Mansf.] apples was evaluated in comparison with 1-MCP applied as a gas in air. The material was applied by dipping fruit in 1-MCP water solutions (0, 0.03, 0.3 or 3 μM) for 4 min, or by exposing fruit to 1-MCP gas (0, 0.01, 0.1 or 1 μL·L-1) in air for 12 h. Fruit were held in air at 20 °C for 25 days after treatment or stored at 0.5 °C in air for up to 6 months followed by 7 days in air at 20 °C. Application of 1-MCP in water or air delayed the increase in respiration and ethylene production associated with fruit ripening, and reduced the amount of fruit softening, loss of acidity and change in peel color. Treatments applied in water required a concentration 700-fold higher compared to those applied in air to induce similar physiological responses. Fruit responses to 1-MCP varied with treatment concentration, and the maximum effects were obtained at concentrations of 0.1 or 1 μL·L-1 in air and 3 μM in water. Peel color change was impacted less than retention of firmness and titratable acidity for some 1-MCP treatments. Treatment with 1-MCP was less effective for slowing peel degreening when treated fruit were stored at 0.5 °C compared to storage at 20 °C. In 1 of the 3 years of this study, fruit treated with 1-MCP and stored in air at 0.5 °C developed a peel disorder typified by a gray-brown discoloration that is unlike other disorders previously reported for this cultivar.
Climacteric `Fuji' apples (Malus ×domestica Borkh.) were treated with water, 0.45 mmol·m–3 1-methylcyclopropene (MCP), 2 mmol·L–1 methyl jasmonate (MJ), or both MCP and MJ. Fruit were kept at 20 °C for 17 days after treatment. Ethylene production, respiration, and color change were all inhibited following MCP treatment. Ethylene production following MJ treatment fluctuated below and above that of controls, but was representative of postclimacteric apples at all times. Rates of respiration and color change were enhanced by MJ, even when fruit were previously treated with MCP. The results indicate that MJ can enhance rate of color change and respiration in apple fruit independently of ethylene action.
This study was conducted to investigate the effect of modified atmosphere packaging (MAP) and delay of irradiation application on the quality of cut Iceberg lettuce. Overall visual quality and tissue browning of cut lettuce were evaluated using a scale of 9 to 1, whereas texture was analyzed instrumentally during 14 days of storage at 4 °C. Results showed that irradiation (0.5 and 1.0 kGy) of cut lettuce induced tissue browning when stored in air; however, when cut lettuce was stored in MAP, irradiated lettuce had better appearance than the non-irradiated ones as a result of lower O2 levels in the packages of irradiated samples compared with the levels in control packages. In general, irradiation at doses of 0.5 and 1.0 kGy did not affect firmness of the lettuce. After 14 days of MAP storage, overall visual quality of non-irradiated samples had a score of ≈4, a score below the limit of sales appeal, whereas the two irradiated samples had scores of 6.5 to 7.9, indicating the irradiated samples had a fair to good quality. Delaying irradiation by 1 day after preparation of cut lettuce did not significantly (P > 0.05) affect cut edge browning, surface browning, or overall visual quality compared with lettuce irradiated immediately after preparation. Our results suggest that MAP is essential to minimize quality deterioration caused by irradiation.
Pre-climacteric `Gala' apple fruit treated with air (control) or 2 μmol·L–1 1-methylcyclopropene (MCP) were exposed to gamma irradiation at 0, 0.5, 1, or 1.5 kGy at 23 °C. Fruit were held at 20 °C for 3 weeks after treatment during which respiration rate, production of ethylene and other volatile compounds, fruit firmness, soluble solid content, titratable acidity, and irradiation injury were determined. MCP treatment reduced respiration and ethylene production and slowed loss of fruit firmness and titratable acidity. Irradiation induced increased respiration of MCP-treated fruit in a dosage-dependent fashion. Irradiation caused a decrease in ethylene production by control (non-MCP) fruit, and the magnitude of the decrease was dependent on irradiation dosage. Irradiation at 0.5, 1, and 1.5 kGy stimulated ethylene production of MCP-treated fruit for only 1 day after treatment. Irradiation induced internal browning and the injury severity increased with dosage. The severity and incidence of irradiation damage were higher in MCP-treated fruit than control fruit. The results indicate that ethylene is involved in mediating apple fruit responses to irradiation.
`Bing' and `Rainier' sweet cherry (Prunus avium L.) fruit treated with 1-methylcyclopropene (1-MCP) were stored at 20 °C in air or 35 μL·L-1 ethylene. Ethylene production by both `Bing' and `Rainier' fruit stored in air was transiently stimulated following 1-MCP treatments, however, there were no significant effects of 1-MCP on respiration rate. Exogenous ethylene stimulated respiration regardless of prior treatment with 1-MCP. Although 1-MCP treatment reduced the increase in `Bing' respiration induced by ethylene, the reduction was less than reported previously for climacteric fruit. These results suggest that stimulation of sweet cherry fruit respiration by ethylene occurs via a process that may be independent of receptors to which 1-MCP binds. Postharvest changes in fruit color and development of stem browning were not altered by 1-MCP treatment, and exogenous ethylene accelerated the development of stem browning regardless of prior treatment with 1-MCP.