Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Xinyi Zhang x
Clear All Modify Search

The branch number of plants is an important agronomic trait that directly influences the ornamental characters and production costs of ornamental plants. Shoot branching has always been a hot topic for Petunia hybrida. During our research, we isolated the homologous gene of narrow-leaf 1 (NAL1), denoted as PhNAL1. The expression level of PhNAL1 was higher in leaves and axils than in roots, stems, and flowers. Pertinent to shoot apex removal and 6-benzyladenine treatments, both interventions demonstrated a suppressive effect on the expression of PhNAL1. Through subcellular localization analysis, we found that PhNAL1 predominantly localized in the nucleus. By using RNA interference targeting PhNAL1, we induced a noticeable increase in branch number while concurrently reducing plant height of petunia. These findings demonstrate that PhNAL1 is involved in regulating branch development within petunia. This study provides genetic resources for the subsequent cultivation of new cultivars of petunia endowed with distinct branching characteristics.

Open Access

Molecular genetic diversity and relationships among 86 Chrysopogon aciculatus (Retz.) Trin. accessions were assessed using intersimple sequence repeat (ISSR) and sequence-related amplified polymorphism (SRAP) markers. Twenty-five ISSR markers generated 283 amplification bands, of which 266 were polymorphic. In addition, 576 polymorphic bands were detected from 627 bands amplified using 30 SRAP primers. Both marker types revealed a high level of genetic diversity, with ISSR markers showing a higher proportion of polymorphic loci (PPL; 94%) than SRAP markers (91.87%). The ISSR and SRAP data were significantly correlated (r = 0.8023). Cluster analysis of the separate ISSR and SRAP data sets clustered the accessions into three groups, which generally were consistent with geographic provenance. Cluster analysis of the combined ISSR and SRAP data set revealed four major groups similar to those based solely on ISSR or SRAP markers. The findings demonstrate that ISSR and SRAP markers are reliable and effective tools for analysis of genetic diversity in C. aciculatus.

Free access

Chrysopogon aciculatus (Retz.) Trin. is a perennial turfgrass for its low management and resistance. To develop simple sequence repeat (SSR) markers for C. aciculatus, we used four Roche 454 pyrosequencing, combined with the magnetic bead enrichment method FIASCO (fast isolation by amplified fragment length polymorphism of sequences containing repeats) to isolate from the C. aciculatus. A total of 66,198 raw sequencing reads were obtained with 4289 sequences (6.48%) were fit for primer pair design. One hundred microsatellite loci were selected to test the primer amplification efficiency in 20 accessions, and out of these, 11 loci were polymorphic. The amount of observed alleles ranged from three to six, with an average of 3.64. Nei’s genetic diversity values ranged from 0.085 to 0.493, with an average of 0.293. Shannon’s information index values ranged from 0.141 to 0.686, with an average of 0.428. Twenty accessions were clustered into three groups by unweighted pair-group method with arithmetic means (UPGMA). These SSR markers will provide an ideal marker system to assist with gene targeting, cultivar variety or species identification, and marker-assisted selection in C. aciculatus species.

Free access

Carpetgrass [Axonopus compressus (Sw.) Beauv.] is an important warm-season perennial turfgrass that is widely used in tropical and subtropical areas. The genetic diversity of 63 carpetgrass accessions in China was studied using simple sequence repeat (SSR) markers. Fourteen SSR primer combinations generated a total of 49 distinct bands, 48 (97.96%) of which were polymorphic. The number of observed alleles ranged from 2 to 6, with an average of 3.5. Coefficients of genetic similarity among the accessions ranged from 0.24 to 0.98. Unweighted pair-group method with arithmetic means (UPGMA) clustered the 63 accessions into three groups, and not all samples from the same region belonged to the same group. SSR markers will promote marker-assisted breeding and the assessment of genetic diversity in wild germplasm resources of carpetgrass.

Free access