Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Xinwang Wang x
Clear All Modify Search
Restricted access

Qianni Dong, Xinwang Wang, David H. Byrne and Kevin Ong

Black spot disease, caused by the fungus Diplocarpon rosae Wolf, is one of the most serious diseases of garden roses. Both complete (vertical) resistance conditioned by dominant Rdr genes and partial (horizontal) resistance conditioned by multiple genes have been described. The use of resistant rose cultivars would reduce the demand of agrochemical applications. The characterization of 16 genotypes for resistance to black spot using two laboratory assays, the detached leaf assay (DLA) and the whole plant inoculation (WPI) approach, indicated that these techniques were well correlated. Thus, either method could be used to assess the resistance of the plants to black spot. Fifteen diploid hybrid populations from 10 parents segregating for partial (horizontal) resistance to black spot derived from Rosa wichuraiana ‘Basye’s Thornless’ (RW) were assessed for black spot resistance by quantifying the percentage of the leaf area with symptoms (LAS) and lesion length (LL) measured by the diameter of the largest lesion per leaf in DLAs. The narrow-sense heritability of partial resistance to black spot as measured by LAS and LL data of DLA was estimated to be from 0.28 to 0.43 when calculated with a genetic variance analysis and from 0.74 to 0.86 when generated from offspring–midparent regression. This suggests that the development of rose cultivars with high levels of stable partial resistance to black spot is a feasible approach for the rose industry.

Restricted access

Fan Cao, Xinwang Wang, Zhuangzhuang Liu, Yongrong Li and Fangren Peng

Pecan cuttings are difficult for rooting. This study describes the pecan hardwood rooting process based on anatomic characteristics to understand root formation mechanisms of pecan cuttings. The expressed proteins of different periods during the adventitious rooting process of pecan seedling hardwood cuttings were identified and analyzed to evaluate the rooting mechanism. The expressed proteins of pecan cutting seedlings were also compared with other cultivar cuttings during the rooting period. Pecan seedling cuttings were developed at different air and substrate temperatures to induce root formation. Adventitious root formation of pecan hardwood cuttings was described, and the phloem at the base of the prepared cuttings was selected as the sample for the differential protein analysis. The results showed that adventitious root formation of pecan hardwood cuttings was the only product of callus differentiation, which originated from the cells of the cambium or vascular ray parenchyma. Such adventitious root primordia were developed from those calluses that formed the regenerative structure, and the expressed proteins during the adventitious rooting of pecan hardwood cutting were identified and analyzed by matrix-assisted laser desorption ionization–time of flight–mass spectrometry (MALDI-TOF-MS) to evaluate the rooting mechanism. Eight differentially expressed proteins were found in the rooting periods, and 15 differential proteins were found by comparing pecan cutting types, which were analyzed by peptide mass fingerprinting homology. The results show that the primordial cells were differentiated from the meristematic cells. Furthermore, the differentially expressed proteins contained energy metabolism proteins, adversity stress proteins, and signal transmission proteins. The energy metabolism-related proteins were adenosine triphosphate (ATP) synthase, photosynthesis-related proteins, and enolase. The adversity-stress proteins containing heat shock-related proteins and signal transmission proteins were mainly cytochrome enzymes and heme-binding proteins. Adventitious root formation of pecan cultivar hardwood cuttings was difficult. More trials should be performed from the potential aspects of high defensive protection and phloem morphologic structure.

Free access

Xinwang Wang, Deborah Dean, Phillip Wadl, Denita Hadziabdic, Brian Scheffler, Timothy Rinehart, Raul Cabrera and Robert Trigiano

Lagerstroemia L. (crape myrtle) is an economically important woody plant genus with several deciduous flowering ornamental species. A wide range of flower colors, long flowering periods, growth habits ranging from miniature to tree sizes, and exfoliating bark characteristics provide horticulturists and nursery growers with a great deal of interest in the breeding and genetics of this genus. We report microsatellite marker development from a GT-enriched genomic library of the interspecific hybrid ‘Natchez’ (L. indica L. × L. fauriei Koehne). Twelve of 43 novel microsatellite loci were characterized on a collection of 33 Lagerstroemia cultivars and accessions. Four to eight alleles per locus (mean = 5.6 alleles) were detected. Allelic richness ranged from 3.9 to 7.2 with a mean of 5.3. The level of polymorphism detected (average gene diversity of 0.68) indicates moderately high genetic diversity within the selections of crape myrtle cultivars and accessions. The examined markers also exhibited high cross-species transferability to L. fauriei, L. limii Merr., and L. subcostata Koehne.

Free access

Naomi R. Smith, Robert N. Trigiano, Mark T. Windham, Kurt H. Lamour, Ledare S. Finley, Xinwang Wang and Timothy A. Rinehart

Flowering dogwood (Cornus florida L.) is an important tree of forests and urban landscapes in the eastern United States. Amplified fragment length polymorphism (AFLP) markers were generated from genomic DNA of 17 cultivars and lines, and four duplicate samples of selective cultivars. Specific markers were identified for all except the following two lines and cultivar: MW94-67, MW95-12, and ‘Plena’. A dichotomous cultivar identification key was constructed based on AFLP data, and specific peaks or combinations of peaks were identified for all cultivars and lines. The key was assessed with seven anonymous (unlabeled) dogwood samples, and all unknowns except one were identified using the dichotomous key. Two of the unknown samples, ‘Cherokee Chief’ and ‘Cherokee Brave’, were difficult to distinguish using the AFLP markers. Intracultivar variation, up to 36% dissimilarity, was observed between duplicate samples of the same cultivar from different trees, suggesting that some mislabeling of trees had occurred at the nursery. The cultivar-specific AFLP markers can be used in breeding applications, patent protection, and in future projects, such as mapping the C. florida genome.

Free access

Xinwang Wang, Robert N. Trigiano, Mark T. Windham, Renae DeVries, Timothy A. Rinehart, James M. Spiers and Brain Scheffler

The genus Cornus consists of many species, of which C. florida, C. kousa, C. mas, and C. stolonifera are four main ornamental species in North America, Asia, and Europe. For example, over 200 cultivars of C. florida alone have been developed for the nursery industry. Microsatellite loci, or SSR, are useful markers for studying genetic diversity and for creating linkage maps of the various species. The objective of this study was to investigate the genetic diversity between these four Cornus species and eight hybrids. Evaulation of the diversity will be useful in assessing the selection pressure of breeders and/or genetic drift of these dogwood cultivars/lines. Fifteen SSR primer pairs were selected to examine 56 Cornus cultivars and/or lines of the four species and hybrids. The study included 28 C. florida cultivars and lines, 15 C. kousa cultivars and lines, four C. stolonifera cultivars, one cultivar of C. mass and eight hybrids between various Cornus species. An exceptionally high level of diversity was detected among the 56 entries in both the number and size range of SSR alleles. A total of 95 alleles with an average of 7.8 alleles per loci were detected among these 56 genotypes. These selected Cornus cultivars and/or lines could be clustered into four to six subgroups. Some Cornus species were integrated into other species groups, suggesting gene flow between species via the breeding or evolution. SSR markers can contribute to the exploitation of genetic diversity for existing Cornus germplasm. For further study, examination of more SSR loci could explain more completely the diversity among these Cornus cultivars and lines.

Free access

Xinwang Wang, Phillip A. Wadl, Cecil Pounders, Robert N. Trigiano, Raul I. Cabrera, Brian E. Scheffler, Margaret Pooler and Timothy A. Rinehart

Genetic diversity was estimated for 51 Lagerstroemia indica L. cultivars, five Lagerstroemia fauriei Koehne cultivars, and 37 interspecific hybrids using 78 simple sequence repeat (SSR) markers. SSR loci were highly variable among the cultivars, detecting an average of 6.6 alleles (amplicons) per locus. Each locus detected 13.6 genotypes on average. Cluster analysis identified three main groups that consisted of individual cultivars from L. indica, L. fauriei, and their interspecific hybrids. However, only 18.1% of the overall variation was the result of differences between these groups, which may be attributable to pedigree-based breeding strategies that use current cultivars as parents for future selections. Clustering within each group generally reflected breeding pedigrees but was not supported by bootstrap replicates. Low statistical support was likely the result of low genetic diversity estimates, which indicated that only 25.5% of the total allele size variation was attributable to differences between the species L. indica and L. fauriei. Most allele size variation, or 74.5%, was common to L. indica and L. fauriei. Thus, introgression of other Lagestroemia species such as Lagestroemia limii Merr. (L. chekiangensis Cheng), Lagestroemia speciosa (L.) Pers., and Lagestroemia subcostata Koehne may significantly expand crapemyrtle breeding programs. This study verified relationships between existing cultivars and identified potentially untapped sources of germplasm.

Free access

Deborah Dean, Phillip A. Wadl, Xinwang Wang, William E. Klingeman, Bonnie H. Ownley, Timothy A. Rinehart, Brian E. Scheffler and Robert N. Trigiano

Viburnum dilatatum is a popular and economically important ornamental shrub. The wide range of desirable horticultural traits, paired with a propensity for seedlings to become invasive, has created interest in the genetics and breeding of this species. To investigate the genetic diversity of V. dilatatum, microsatellite loci were identified from a GT-enriched genomic library constructed from V. dilatatum ‘Asian Beauty’. Eleven microsatellite loci have been characterized on a group of 16 different related V. dilatatum cultivars and hybrids. Two to 12 alleles were identified per locus, and the polymorphism information content (PIC) values ranged from 0.36 to 0.87. Expected heterozygosity (He) ranged from 0.48 to 0.88 and observed heterozygosity (Ho) ranged from 0 to 0.73. This set of molecular markers also exhibited expected transferability between various V. dilatatum cultivars and two hybrids with V. japonicum. As a consequence, these markers will aid in breeding for new cultivar development, assist with early detection and screening of plants that have escaped cultivation, and are expected to help in refining the phylogenetic relationship of V. dilatatum to other species and genera within the Adoxaceae.

Free access

Phillip A. Wadl, Xinwang Wang, John K. Moulton, Stan C. Hokanson, John A. Skinner, Timothy A. Rinehart, Sandra M. Reed, Vincent R. Pantalone and Robert N. Trigiano

Cross-species transferability of simple sequence repeats (SSRs) is common and allows SSRs isolated from one species to be applied to closely related species, increasing the use of previously isolated SSRs. The genus Cornus consists of 58 species that are ecologically and economically important. SSRs have previously been isolated from C. florida and C. kousa. In this study, 36 SSRs were tested on taxa from 18 Cornus species and hybrids for cross-species transferability and genetic diversity was calculated for each locus using polymorphism information content (PIC). Cross-species transferability of SSR loci was higher in more closely related species and PIC values were high. Evidence was found for conserved primer sites as determined by the amplification of SSR loci in the taxa examined. Polymerase chain reaction products were cloned and sequenced for three SSR loci (CF48, CF59, and CF124) and all individuals sequenced contained the appropriate repeat. Phylogenetic relationships of 14 Cornus species were inferred using nucleotide sequences of SSR locus CF48. The most parsimonious tree resulting from this analysis was in concordance with phylogenies based on matK and internal transcribed spacer sequences. The SSR loci tested in this study will be useful in future breeding, population, and genetic studies within Cornus.

Free access

Phillip A. Wadl, Xinwang Wang, Andrew N. Trigiano, John A. Skinner, Mark T. Windham, Robert N. Trigiano, Timothy A. Rinehart, Sandra M. Reed and Vincent R. Pantalone

Flowering dogwood (Cornus florida) and kousa dogwood (C. kousa) are popular ornamental species commonly used in the horticultural industry. Both trees are valued for their beautiful floral display and four-season appeal. Species-specific simple sequence repeat (SSR) loci were used to genotype and assess genetic diversity of 24 flowering dogwood cultivars and breeding lines and 22 kousa dogwood cultivars. Genetic diversity was determined by allele sharing distances and principal coordinate analysis and was high in both species. Molecular identification keys were developed for cultivars and breeding lines of each species using a few polymorphic SSRs loci (four in C. florida and five in C. kousa). Most (18 of 24) of the flowering dogwood and all (22 of 22) kousa dogwood accessions could be distinguished from each other using these SSRs; those that could not were resolved using DNA amplification fingerprinting. The reliability of both keys was assessed using five anonymous cultivars for each dogwood species, which were correctly identified using the molecular keys. The genetic information presented here will be useful for identification and verification of cultivars for nurseries and as molecular markers for breeders and researchers.