Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Xiaoyan Sun x
Clear All Modify Search
Restricted access

Yu Zong, Ping Sun, Xiaoyan Yue, Qingfeng Niu and Yuanwen Teng

Pyrus betulaefolia is one of the most popular pear (Pyrus) rootstocks in China and other east Asian countries because of its good adaptability to versatile environments. However, the number of wild P. betulaefolia populations is decreasing because of habitat destruction and fragmentation. An urgent evaluation of P. betulaefolia genetic diversity and population structure is necessary to develop a conservation strategy for this important wild species. Thirteen simple sequence repeat loci were detected to infer the genetic composition of 18 P. betulaefolia populations in northern China. The average number of different alleles for each locus was 7.1. The number of effective alleles among loci ranged from 1.77 to 5.94. The overall mean values of expected and observed heterozygosity were 0.702 and 0.687, respectively. The Taihang Mountains, which run from northeast to southwest, acted as natural boundary in shaping the genetic diversity of P. betulaefolia in northern China. The distinct pattern, which was also observed in the distribution of chloroplast DNA (cpDNA) variation, appeared to be obscured by pollen-mediated gene flow in the distribution of nuclear microsatellite variation. Large populations with high allelic richness (e.g., populations BT, ZN, and QS) are considered suitable for in situ conservation because of the potential for adaptation to future environmental change. The smaller populations had mixed gene pools (e.g., populations GQ and XF) and should therefore also be considered for ex situ conservation. Preserving genetic diversity in seeds was proposed when field collections are fully characterized.

Restricted access

Xiaoning Li, Xiaoyan Sun, Guangyang Wang, Erick Amombo, Xiuwen Zhou, Zhaohong Du, Yinkun Zhang, Yan Xie and Jinmin Fu

Phosphorus (P) is an essential nutrient element that is necessary for plant growth and development. However, most of the P exists in insoluble form. Aspergillus aculeatus has been reported to be able to solubilize insoluble forms of P. Here, to investigate the P-solubilizing effect of A. aculeatus on the performance of perennial ryegrass (Lolium perenne) under P-deficiency stress, we created four treatment groups: control [i.e., no Ca3(PO4)2 or A. aculeatus], A. aculeatus only (F), Ca3(PO4)2 and Ca3(PO4)2 + A. aculeatus [Ca3(PO4)2 + F] treatment, and Ca3(PO4)2 at concentrations of 0 and 3 g per pot (0.5 kg substrate per pot). In our results, the liquid medium inoculated with A. aculeatus exhibited enhanced soluble P and organic acid content (tartaric acid, citric acid, and aminoacetic acid) accompanied with lower pH, compared with the noninoculated regimen. Furthermore, A. aculeatus also played a primary role in increasing the soluble P content of substrate (1 sawdust: 3 sand), the growth rate, turf quality, and photosynthetic capacity of the plant exposed to Ca3(PO4)2 + F treatment, compared with other groups. Finally, in perennial ryegrass leaves, there was a dramatic increase in the valine, serine, tyrosine, and proline contents, and a remarkable decline in the glutamic acid, succinic acid, citric acid, and fumaric acid contents in the Ca3(PO4)2 + F regimen, compared with other groups. Overall, our results suggested that A. aculeatus may play a crucial role in the process of solubilizing Ca3(PO4)2 and modulating perennial ryegrass growth under P-deficiency stress.

Restricted access

Chen Chen, Meng-Ke Zhang, Kang-Di Hu, Ke-Ke Sun, Yan-Hong Li, Lan-Ying Hu, Xiao-Yan Chen, Ying Yang, Feng Yang, Jun Tang, He-Ping Liu and Hua Zhang

Aspergillus niger is a common pathogenic fungus causing postharvest rot of fruit and vegetable, whereas the knowledge on virulence factors is very limited. Superoxide dismutase [SOD (EC] is an important metal enzyme in fungal defense against oxidative damage. Thus, we try to study whether Cu/Zn-SOD is a virulence factor in A. niger. Cu/Zn-SOD encoding gene sodC was deleted in A. niger [MA70.15 (wild type)] by homologous recombination. The deletion of sodC led to decreased SOD activity in A. niger, suggesting that sodC did contribute to full enzyme activity. ΔsodC strain showed normal mycelia growth and sporulation compared with wild type. However, sodC deletion markedly increased the cell’s sensitivity to intracellular superoxide anion generator menadione. Besides, spore germination under menadione and H2O2 stresses were significantly retarded in ΔsodC mutant compared with wild type. Further results showed that sodC deletion induced higher superoxide anion production and higher content of H2O2 and malondialdehyde (MDA) compared with wild type, supporting the role of SOD in metabolism of reactive oxygen species (ROS). Furthermore, ΔsodC mutant had a reduced virulence on chinese white pear (Pyrus bretschneideri) as lesion development by ΔsodC was significantly less than wild type. The determination of superoxide anion, H2O2, and MDA in A. niger-infected pear showed that chinese white pear infected with ΔsodC accumulated less superoxide anion, H2O2, and MDA compared with that of wild type A. niger, implying that ΔsodC induced an attenuated response in chinese white pear during fruit–pathogen interaction. Our results indicate that sodC gene contributes to the full virulence of A. niger during infection on fruit. Aspergillus niger is one of the most common species found in fungal communities. It is an important fermentation industrial strain and is also known to cause the most severe symptoms in fruit during long-term storage (Pel et al., 2007). Meanwhile, plants activate their signaling pathways to trigger defense responses to limit pathogen expansion. One of the earliest host responses after pathogen attack is oxidative burst, during which large quantities of ROS are generated by different host enzyme systems, such as glucose oxidase (Govrin and Levine, 2000). ROS such as singlet oxygen, superoxide anion, hydroxyl (OH), and H2O2 are released to hinder the advance of pathogens (Gara et al., 2003). ROS can react with and damage cellular molecules, such as DNA, protein, and lipids, which will limit fungal propagation in the host plant (Apel and Hirt, 2004).