Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Xiaoming He x
Clear All Modify Search

Castanea henryi is an important woody grain tree species native to China. The objective of the current study was to find the suitable plant growth regulators (PGRs) and the optimal concentrations for direct organogenesis by using axillary shoots and cotyledonary nodes. Seeds were collected from the field, sterilized, and germinated in vitro. Axillary shoots and cotyledonary nodes of 3-week-old seedlings were used as explants. To find the suitable PGR for adventitious shoot induction, 0.5 mg·L–1 6-benzylaminopurine (6-BA), 0.1 mg·L–1 indole-3-acetic acid (IAA), 0.1 mg·L–1 2,4-dichlorophenoxyacetic acid (2,4-D), or 0.1 mg·L–1 1-naphthaleneacetic acid (NAA) was supplemented to Murashige and Skoog (MS) medium containing 0.65% agar and 3% sucrose. A high induction percentage of adventitious shoots (85.67%) was obtained from cotyledonary nodes supplemented with 0.1 mg·L–1 2,4-D. The type of explant influenced shoot proliferation rates and quality. Apical explants produced more and longer shoots than nodal segments. For shoot multiplication, 1 mg·L–1 6-BA + 0.05 mg·L–1 indole-3-butyric acid (IBA) supplemented with MS medium produced 12.33 and 6.25 shoots per explant, respectively, from apical and nodal explants. For shoot elongation and strengthening, 2 mg·L–1 6-BA + 0.05 mg·L–1 IBA supplemented with MS medium was the best combination, producing shoots with a mean length of 3.50 cm, a diameter of 0.46 cm, and about eight leaves per shoot. The greatest rooting of 76.70% and 11.33 roots per shoot was achieved when cultured in MS medium supplemented with 3.5% perlite + 1.5 mg·L–1 IBA. For acclimatization of the rooted plantlets in the greenhouse, a survival rate of 80% was achieved. This protocol—from multiplication to acclimation—is helpful to realize mass propagation of high-quality trees of chinquapin for increasing production and nut quality.

Free access

Heat stress (HS) negatively influences plant development and growth, especially production and quality. Cucumber is a widely cultivated plant in the gourd family Cucurbitaceae that is often exposed to high temperatures during summer and protected cultivation. In this study, we performed whole-genome re-sequencing of two pools, one heat-tolerant and one heat-sensitive, of the F2 population derived from L-9 (heat-resistant) and A-16 (heat-sensitive). The genetic analysis showed that the heat resistance of L-9 cucumber seedlings was controlled by a single recessive gene. By combining bulked segregant analysis (BSA) technology, the crucial gene related to HS was preliminarily mapped to a 1.08-Mb region on chromosome 1. To fine-map the locus, Indel markers were designed according to the genomic sequence. Finally, the gene was narrowed to a 550-kb region flanked by two Indel markers, namely Indel-H90 and Indel-H224, that contained 56 candidate genes. Re-sequencing results indicated that 10 candidate genes among the 56 in the candidate region showed single base pair differences in the exons. Quantitative reverse-transcription polymerase chain reaction showed that 6 genes among the 10 candidate genes were significantly decreased when exposed to high temperatures. These results not only were useful for the isolation and characterization of the key genes involved in HS but also provided a basis for understanding the mechanism of heat tolerance regulation.

Free access