Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Xiao-qing Wang x
Clear All Modify Search
Free access

Wei-Ling Yuan, Shang-yong Yuan, Xiao-hui Deng, Cai-xia Gan, Lei Cui and Qing-fang Wang

Efficient nitrogen (N) fertilizer management is crucial for ensuring the maximum economic yield and reducing the risk of environmental pollution. The objective of this study was to determine the effect of N fertilizer management on root yield and N uptake of radish in southern China by using 15N isotope tracing. A 2-year field experiment was conducted with three N rates (0, 60, and 120 kg N/ha) and two different application proportions, viz, A [50% at basal, 20% at 15 days after seeding (DAS), 30% at 30 DAS] and B (30% at basal, 20% at 15 DAS, 50% at 30 DAS) for each N rate, which were expressed as N0, N60A, N60B, N120A, and N120B, respectively. The results showed that root yields were significantly increased with N rates increasing from 0 to 120 kg N/ha. The root yields for N120A and N120B were 67.60 t·ha−1 and 72.50 t·ha−1 at harvest, 64.07% and 66.67% higher than those for the treatments of N60A and N60B, respectively. Mean radish recovery of N fertilizer ranged from 25.90% at N120A to 32.60% at N60B, and N fertilizer residual rate in the soil ranged from 11.50% at N120A to 14.90% at N60B. About 17.50% to 35.70% of total uptake of 15N derived from basal fertilizer was absorbed at seeding stage. However, 61.87% to 80.18% of total uptake of 15N derived from topdressing fertilizer absorbed at root expanding stage. Therefore, appropriate nitrogen application with increasing topdressing nitrogen amount could increase root yield of radish and the nitrogen recovery efficiency. Nitrogen fertilizer application recommended was 120 kg N/ha with 30% for basal, 20% for 15 DAS and 50% for 30 DAS in this study.

Full access

Chun-hui Shi, Xiao-qing Wang, Xue-ying Zhang, Lian-ying Shen, Jun Luo and Yu-xing Zhang

This study explored the effects of different colored bags (blue, green, white, yellow, orange, and red) on russet deposition on the peel of semi-russet ‘Cuiguan’ pears 10 days after full bloom (DAFB). The process of russeting of the peel and structure of the cork layer were characterized by microscopy and scanning electron microscopy (SEM), followed by the detection of lignin and the activity of enzymes involved in lignin synthesis. The expression of cinnamate-4-hydroxylase, 4-coumarate:coenzyme A ligase, cinnamyl alcohol dehydrogenase, cinnamoyl-CoA reductase, and peroxidase, which were related to phenylalanine ammonia-lyase, was determined via real-time quantitative polymerase chain reaction. Russeting of the outer peel of ‘Cuiguan’ pear accumulated rapidly at 80 DAFB, and a positive relationship between the russet index and lignin content was observed. Red and infrared (IR) ray, partial far-IR light (600–800 nm), and ultraviolet-A light (350–400 nm) promoted russeting in ‘Cuiguan’ pear peel, whereas green light decreased russeting, the russet index, enzymatic activities, and the expression levels of enzymes involved in lignin synthesis. Values of all these factors were higher for ‘Cuiguan’ pears in red bags than for those in bags of other colors. These findings suggested that spectral components affected the synthesis of lignin and the formation of fruit russet. Storage in green bags reduced russeting and improved fruit appearance.