Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Xiao-Yan Chen x
Clear All Modify Search

Aspergillus niger is a common pathogenic fungus causing postharvest rot of fruit and vegetable, whereas the knowledge on virulence factors is very limited. Superoxide dismutase [SOD (EC 1.15.1.10)] is an important metal enzyme in fungal defense against oxidative damage. Thus, we try to study whether Cu/Zn-SOD is a virulence factor in A. niger. Cu/Zn-SOD encoding gene sodC was deleted in A. niger [MA70.15 (wild type)] by homologous recombination. The deletion of sodC led to decreased SOD activity in A. niger, suggesting that sodC did contribute to full enzyme activity. ΔsodC strain showed normal mycelia growth and sporulation compared with wild type. However, sodC deletion markedly increased the cell’s sensitivity to intracellular superoxide anion generator menadione. Besides, spore germination under menadione and H2O2 stresses were significantly retarded in ΔsodC mutant compared with wild type. Further results showed that sodC deletion induced higher superoxide anion production and higher content of H2O2 and malondialdehyde (MDA) compared with wild type, supporting the role of SOD in metabolism of reactive oxygen species (ROS). Furthermore, ΔsodC mutant had a reduced virulence on chinese white pear (Pyrus bretschneideri) as lesion development by ΔsodC was significantly less than wild type. The determination of superoxide anion, H2O2, and MDA in A. niger-infected pear showed that chinese white pear infected with ΔsodC accumulated less superoxide anion, H2O2, and MDA compared with that of wild type A. niger, implying that ΔsodC induced an attenuated response in chinese white pear during fruit–pathogen interaction. Our results indicate that sodC gene contributes to the full virulence of A. niger during infection on fruit. Aspergillus niger is one of the most common species found in fungal communities. It is an important fermentation industrial strain and is also known to cause the most severe symptoms in fruit during long-term storage (). Meanwhile, plants activate their signaling pathways to trigger defense responses to limit pathogen expansion. One of the earliest host responses after pathogen attack is oxidative burst, during which large quantities of ROS are generated by different host enzyme systems, such as glucose oxidase (). ROS such as singlet oxygen, superoxide anion, hydroxyl (OH−), and H2O2 are released to hinder the advance of pathogens (). ROS can react with and damage cellular molecules, such as DNA, protein, and lipids, which will limit fungal propagation in the host plant ().

Free access

Kiwifruit (Actinidia deliciosa) is a typical climacteric fruit, and its ripening is closely associated with ethylene. In this study, we present evidence that H2S alleviated ethylene-induced ripening and senescence of kiwifruit. Kiwifruit were fumigated with ethylene released from 0.4 g·L−1 ethephon solution or H2S with 1 mm sodium hydrosulfide (NaHS) as the donor or in combination. Fumigation with ethylene was found to accelerate kiwifruit ripening and H2S treatment effectively alleviated ethylene-induced fruit softening in parallel with attenuated activity of polygalacturonase (PG) and amylase. Ethylene + H2S treatment also maintained higher levels of ascorbic acid, titratable acid, starch, soluble protein, and reducing sugar compared with ethylene group, whereas suppressed the increase in chlorophyll and carotenoid. Kiwifruit ripening and senescence under ethylene treatment was accompanied by elevation in reactive oxygen species (ROS) levels, including H2O2 and superoxide anion and malondialdehyde (MDA), but combined treatment of ethylene plus H2S alleviated oxidative stress in fruit. Furthermore, the activities of antioxidative enzymes catalase (CAT) and ascorbate peroxidase (APX) were increased by ethylene + H2S treatment in comparison with ethylene alone, whereas the activities of lipoxygenase (LOX) and polyphenol oxidase (PPO) were attenuated by H2S treatment. Further investigations showed that H2S repressed the expression of ethylene synthesis-related genes AdSAM, AdACS1, AdACS2, AdACO2, and AdACO3 and cysteine protease genes, such as AdCP1 and AdCP3. Taken together, our findings suggest that H2S alleviates kiwifruit ripening and senescence by antagonizing the effect of ethylene through reduction of oxidative stress and inhibition of ethylene synthesis pathway.

Free access

Seashore paspalum (Paspalum vaginatum) is an important warm-season turfgrass distributed in tropical and coastal areas. It has excellent resistance to abiotic stresses, such as salinity, drought, and low temperature. However, the research on genetic diversity of local P. vaginatum collections from China is limited. In this study, the genetic diversity among 58 P. vaginatum accessions from four different provinces in China and four cultivars were assessed using simple sequence repeat (SSR) markers. The results indicated that a total of 45 alleles were detected by 19 polymorphic markers, with a range of 2 to 4 and an average of 2.4 alleles per marker. The genetic similarity coefficients between each pair of the 58 P. vaginatum accessions and four cultivars ranged from 0.51 to 1.00, with an average of 0.77. The range of variation of Shannon diversity index of each SSR marker was 0.047 to 1.075, with an average of 0.486. The polymorphic information content of each SSR marker varies from 0.016 to 0.577, with an average of 0.249. The results of cluster analysis and principal component analysis (PCA) showed that 58 P. vaginatum accessions and four cultivars were divided into four groups. These results provide the theoretical basis for the genetic diversity assessments and molecular marker–assisted breeding of P. vaginatum species.

Open Access