Search Results

You are looking at 1 - 10 of 18 items for

  • Author or Editor: Xiang Wang x
Clear All Modify Search

Evergreen rhododendrons (Rhododendron L.) are important woody landscape plants in many temperate zones. During winters, leaves of these plants frequently are exposed to a combination of cold temperatures, high radiation, and reduced photosynthetic activity, conditions that render them vulnerable to photooxidative damage. In addition, these plants are shallow-rooted and thus susceptible to leaf desiccation when soils are frozen. In this study, the potential adaptive significance of leaf morphology and anatomy in two contrasting Rhododendron species was investigated. R. catawbiense Michx. (native to eastern United States) exhibits thermonasty (leaf drooping and curling at subfreezing temperatures) and is more winter-hardy [leaf freezing tolerance (LT50) of containerized plants ≈–35 °C], whereas R. ponticum L. (native to central Asia) is less hardy (LT50 ≈–16 °C), and nonthermonastic. Thermonasty may function as a light and/or desiccation avoidance strategy in rhododendrons. Microscopic results revealed that R. ponticum has significantly thicker leaf blades but thinner cuticle than R. catawbiense. There is one layer of upper epidermis and three layers of palisade mesophyll in R. catawbiense compared with two distinct layers of upper epidermis and two layers of palisade mesophyll in R. ponticum. We suggest that the additional layer of upper epidermis in R. ponticum and thicker cuticle and extra palisade layer in R. catawbiense represent structural adaptations for reducing light injury in leaves and could serve a photoprotective function in winter when leaf photochemistry is generally sluggish. Results also indicate that although stomatal density of R. ponticum is higher than that of R. catawbiense leaves, the overall opening of stomatal pores per unit leaf area (an integrated value of stomatal density and pore size) is higher by approximately twofold in R. catawbiense, suggesting that R. catawbiense may be more prone to winter desiccation and that thermonasty may be a particularly beneficial trait in this species by serving as a desiccation-avoidance strategy in addition to a photoprotection role.

Free access

Skinning or surface abrasion in sweetpotato [Ipomoea batatas (L.) Lam.] roots during harvest causes a substantial loss of marketable products in storage as a result of rots, loss of moisture, and simply unattractive marketable appearance. In 2008, 2010, and 2011, changes in skinning incidence/severity and skin lignin/suberin content in response to preharvest foliar applications of ethephon or defoliation/devining were investigated. Field-grown ‘Beauregard’ (B-14) sweetpotato plots were treated with ethephon at 0.84, 1.68, and 2.52 kg·ha−1 (based on the recommendations for tobacco) applied at 1, 3, and 7 days before harvest (DBH). Defoliated/devined treatments were applied at 0, 1, 3, and 7 DBH. Skinning incidence and severity were reduced with ethephon when applied 3 and 7 DBH in 2 of 3 years compared with 1 DBH. The force required to skin the storage root was measured at harvest in 2011 and it increased with defoliation/devining and ethephon applications at 3 and 7 DBH. Skin lignin/suberin was higher in roots from ethephon-treated plants but was weakly correlated (r = 0.51) with the force required to peel the skin. Ethephon applications also increased cortex phenolic content and either decreased or maintained skin phenolic content in storage roots compared with defoliated/devined treatments. These results suggest that skin set and/or skinning resistance in sweetpotato appears to be influenced by other factors in addition to skin lignification/suberization.

Free access

Hydrangea macrophylla is the most popular species in the genus Hydrangea because of its large and brightly colored inflorescences. Since the early 1900s, numerous cultivars with showy flowers have been selected. Although many H. macrophylla cultivars have been developed, cold hardiness is still the major limitation to their outdoor use. Hydrangea arborescens is a small attractive shrub or subshrub native to northeastern parts of the United States, which is valued for its hardiness. Interspecific breeding of H. arborescens and H. macrophylla has been tried, but putative hybrid seedlings either died at an early stage or were not verified. We made successful hybridizations between H. macrophylla ‘Blue Diamond’ and H. arborescens ‘Annabelle’ and used in vitro ovary culture to produce viable plants. Hybrids were intermediate in appearance between parents, but variable in leaves, inflorescences, and flower color. The success of this hybridization was confirmed by six simple sequence repeat (SSR) genetic markers. The maternal chromosome number was 36, and the paternal number was 38. Chromosome counts of hybrids indicated that nearly half of them were aneuploids. Male fertility of progeny was evaluated by fluorescein diacetate staining of pollen. Twelve out of 14 hybrids (85.7%) had male fertility. We documented the first flowering progeny of H. macrophylla and H. arborescens, suggesting an effective beginning to a cold hardiness breeding program.

Free access

The study here aimed to investigate the effects of pre-winter ditching and freezing-thawing on soil microbial structure in different soil layers of old apple orchards. A total of 30 samples were obtained from 3 Nov. 2016 to 9 Mar. 2017. The relative abundance, alpha diversity, community structure of fungi, and the relationship between environmental factors and microbial community structure were analyzed, and the greenhouse experiments were used for further verification. Results showed that the number of actinomycete and total bacterial colonies decreased, whereas the number of fungi sustained decreased, resulting in a higher bacteria/fungi ratio. The percentage of Fusarium initially decreased, then later increased by 11.38%, 3.469%, 2.35%, 2.29%, and 3.09%. However, Fusarium levels were still 9% lower on 9 Mar. 2017 that on 3 Nov. 2016. Both the abundance and diversity of the community were higher in the upper soil than in the lower. The main environmental factor contributing to the percentage of Fusarium change was average temperature (AT), although highest temperature (HT) and water content (WC) also had an impact. The Malus hupehensis Rehd. seedlings growing in lower soil were more vigorous than that in upper soil. In sum, pre-winter ditching and freezing-thawing in old apple orchards can reduce the abundance percentage of harmful Fusarium and promote the growth of M. hupehensis Rehd. seedlings.

Open Access

The periods of flower bud differentiation and fruit growth for Camellia oleifera overlap greatly affect the allocation of photoassimilates to flower buds and fruit, resulting in obvious alternate bearing. To export the cause and mitigate alternate bearing of Camellia oleifera, the allocation of photoassimilates to buds and fruit supplied by leaves at different node positions was studied by the addition of labeled 13CO2 during the slow fruit growth stage. The fate of 13C photoassimilated carbon was followed during four periods: slow fruit growth (4 hours and 10 days after 13C labeling); rapid growth (63 days after 13C labeling); oil conversion (129 days after 13C labeling); and maturation (159 days after 13C labeling). Photosynthetic parameters and leaf areas of the leaves shared a common pattern (fifth > third > first), and the order of photosynthetic parameters of different fruit growth stages was as follows: oil conversion > maturation > rapid growth > slow growth. The most intense competition between flower bud differentiation and fruit growth occurred during the oil conversion stage. Dry matter accumulation in different sinks occurred as follow: fruit > flower bud > leaf bud. Photoassimilates from the labeled first leaf were mainly translocated to the first flower bud, and the upper buds were always differentiated into flower buds. The photoassimilates from the labeled third leaf were distributed disproportionately to the third flower bud and fruit. They distributed more to the third flower bud, and the middle buds formed either flower or leaf buds. However, the photoassimilates from the labeled fifth leaf were primarily allocated to the fruit that bore on the first node of last year’s bearing shoot, and basal buds did not form flower buds. Based on our results, the basal leaves should be retained for a high yield in the current year, and the top leaves should be retained for a high yield in the following year. Our results have important implications for understanding the management of flower and fruit in C. oleifera. The thinning of fruit during the on-crop year can promote flower bud formation and increase the yield of C. oleifera crops in the following year. During the off-year, more fruit should be retained to maintain the fruit yield. The thinning of middle-upper buds could promote more photoassimilates allocate to the fruit.

Open Access

Plants with the flower color phenotype of double-color flowers are very precious and attractive and can usually be regarded as valuable germplasm resources for studying and improving flower color. This paper summarizes the coloring mechanism of double-color flowers in plants from three aspects: the formation of double-color flowers, the physiological factors affecting the coloring difference of double-color flowers, and the molecular mechanism affecting the coloring difference of double-color flowers, to provide a theoretical reference for the in-depth study of the coloring mechanism and molecular breeding of double-color flowers in the future.

Open Access

The present study aims to reveal the karyotypic characteristics and genetic relationships of apricot (Prunus armeniaca L.) accessions from different ecological groups. Fourteen, 9, and 30 accessions from the Central Asian ecological group, North China ecological group, and Dzhungar-Ili ecological group, respectively, were analyzed according to the conventional pressing plate method. The results showed that all the apricot accessions from the different ecological groups were diploid (2n = 2x = 16). The total haploid length of the chromosome set of the selected accessions ranged from 8.11 to 12.75 μm, which was a small chromosome, and no satellite chromosomes were detected. All accessions had different numbers of median-centromere chromosomes or sub-median-centromere chromosomes. The karyotypes of the selected accessions were classified as 1A or 2A. Principal component analysis revealed that the long-arm/short-arm ratio (0.968) and the karyotype symmetry index (−0.979) were the most valuable parameters, and cluster analysis revealed that the accessions from the Central Asian ecological group and Dzhungar-Ili ecological group clustered together. In terms of karyotypic characteristics, the accessions from the Dzhungar-Ili ecological group and Central Asian ecological group were closely related.

Open Access

Yellow-leafed cultivars usually do not grow as vigorous as their green-leafed counterparts, which affect their use in landscapes. To breed Forsythia cultivars with both yellow leaves and vigorous growth, crosses between F. ‘Courtaneur’ (♀) and Forsythia koreana ‘Suwon Gold’ (♂) were conducted, and 52 F1 hybrid progenies with different leaf colors (green, chartreuse, and yellow) were obtained. The progenies were categorized into three groups [Yellow Group (YG), Chartreuse Group (CG), and Green Group (GG)] based on leaf colors. The growth index (GI) and the number of branches and leaves of YG progenies were significantly lower at 2%, 35%, and 34% of GG progenies. As the leaves changed from green to chartreuse and to yellow, chlorophyll content, leaf thickness, and chlorophyll fluorescence parameters decreased and the chloroplast structures were disintegrated gradually, which influenced the leaf photosynthetic activity and led to weak growth. Compared with yellow-leafed progenies, the leaf chlorophyll content and leaf thickness of chartreuse-leafed progenies were significantly higher at 71% and 9%. The chloroplast structure of stroma lamella of chartreuse-leafed progenies was relatively intact. Carboxylation efficiency (CE), photochemical efficiency of PS II (F v/F m), and the number of branches and leaves of GG progenies were significantly higher than YG progenies; however, they have no significant difference with CG progenies. The results were promising for breeding new forsythia cultivars from moderate growth and chartreuse leaves.

Free access