Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: X. Liu x
  • Refine by Access: All x
Clear All Modify Search
Free access

X. Liu, P. Robinson, M.L. Arpaia, and G.W. Witney

Monthly samples were taken from 9-year-old `Hass' avocado trees on Duke 7 rootstock grown at the UC Southcoast Research and Extension Center in Irvine, Calif. Changes in starch and total soluble sugars were monitored from fine and coarse roots, trunk (above the bud union), small diameter stems, leaves, and fruit. When possible, seasonal carbohydrate changes were compared to root and shoot flushing patterns. In all of the vegetative plant organs monitored, total soluble sugars accounted for most of the carbohydrate. Starch accounted for ≈10% of the sample dry weight, whereas the total soluble sugars accounted for ≈18%. D-mannoheptulose and perseitol, both C7 sugars, were the predominant soluble sugars throughout the year. Fructose, glucose, and sucrose accounted for <5% of the total soluble sugars. During fruit development, soluble sugar content of the exo- and mesocarp tissues >25% of the dry weight. The significance of these findings will be discussed in relationship to tree phenology and carbohydrate partitioning.

Free access

C.S. Vavrina, P.A. Stansly, and T.X. Liu

Household detergents were evaluated in field studies on fresh-market tomato (Lycopersicon esculentum Mill.) for insecticidal and phytotoxic effects. Laboratory bioassays were used to examine the toxicity of a household liquid dish detergent on small nymphs of silverleaf whitefly, Bemisia argentifolii Bellows and Perring. The detergents tested proved to be more toxic to whitefly nymphs than the commercial insecticidal soap. Detergent treatments were applied to tomato with a commercial high pressure hydraulic sprayer at 0%, 1%, 2%, 4%, and 8% (by volume) initially and at 0%, 0.25%, 0.5%, 1.0%, and 2.0% (by volume) in subsequent tests. As detergent rate, frequency of application, or both increased, plant dry weight accumulation and fruit yield decreased. Applying detergent also increased time to fruit maturity. A once-a-week application of 0.25% to 0.5% detergent initially applied 2 weeks after transplanting alleviated phytotoxicity and yield reduction problems.

Free access

X. Liu, J.A. Anderson, N.O. Maness, and B. Martin

Pepper (Capsicum annuum L. `Early Calwonder') leaf disks were vacuum-infiltrated in distilled water (control), anisomycin, aurintricarboxylic acid, cycloheximide, ethionine, norvanine, or puromycin to determine whether protein synthesis inhibitors blocked high-temperature acclimation. After infiltration, one-half of the leaf disks were placed in an incubator at 24C as a control, and the other half were kept in a water bath at 38C for 2 h to induce acclimation. Test tubes containing the disks then were placed in a water bath at 50.5C for 0, 1, 5, 10, 15, 25, 35, or 50 minutes. Thermotolerance was evaluated using electrolyte leakage. High-temperature acclimation was blocked in all six protein synthesis-inhibitor treatments. Only control disks infiltrated with distilled water acclimated. It seems that protein synthesis is required for high-temperature acclimation in bell pepper leaves.

Free access

L.X. Zhang, W.C. Chang, Y.J. Wei, L. Liu, and Y.P. Wang

Cryopreservation of pollen from two ginseng species —Panax ginseng L. and P. quinquefolium L.—was studied. Freezing anthers that served as pollen carriers to –40C before liquid N storage affected pollen viability little after liquid N storage. Anther moisture content affected pollen viability significantly when stored in liquid N. The ideal anther moisture content to carry pollen for liquid N storage was 32% to 26% for P. ginseng and 27% to 17% for P. quinquefolium. Viability of pollen from P. quinquefolium anthers with 25.3% moisture content changed little after 11 months of liquid N storage.

Free access

Panpan Meng, Ying Ge, Qianjin Cao, Jie Chang, Peng Pan, Chi Liu, Yijun Lu, and Scott X. Chang

Lycoris species have appealing characteristics for potting plants, cut flowers, and landscaping decorations, including attractive foliage, which is very similar to that of cymbidium. Lycoris species have been extensively propagated and marketed in Asia. Understanding the response of Lycoris spp. to irradiance intensity will help the horticultural industry improve the production of potting plants of those species. We studied the responses of photosynthesis, growth, and biomass allocation of potted Lycoris spp. (L. chinensis, L. longituba, and L. sprengeri) bulbs grown under three levels of irradiance, i.e., 100%, 70%, and 30% full sunlight. We found that in terms of biomass production L. chinensis can be cultivated under all levels of irradiance studied from full to 30% sunlight. For L. longituba, high irradiance levels increased the rate of net photosynthesis. For both L. chinensis and L. longituba, the full sunlight treatment produced the most attractive plants characterized by shorter, wider, and darker green leaves, features that appeal to consumers. However, none of the growth traits of L. sprengeri were affected by the irradiance treatment over the entire experimental period. It can be concluded that potting plants of L. chinensis and L. longituba are best produced under full sunlight, whereas L. sprengeri can be produced under irradiance levels from 30% to full sunlight.