Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: William T. Crow x
Clear All Modify Search
Free access

Laurie E. Trenholm, Darin W. Lickfeldt and William T. Crow

This research was conducted to determine if application of 1,3-dichloropropene (1,3-D) could reduce turfgrass water requirements in soil infested with sting nematodes (Belonolaimus longicaudatus Rau). The effects of 1,3-D and fenamiphos were evaluated on quality and persistence of `Tifway 419' bermudagrass (Cynodon dactylon × C. transvaalensis Burtt-Davy) subjected to drought or deficit irrigation. The research consisted of two greenhouse studies in 2002 and 2003 where irrigation was either withheld or applied in deficit quantities, and one field study in 2003 where irrigation was withheld. In general, 1,3-D-treated turf maintained up to 40% higher quality during drought than other treatments and had up to 27% less leaf wilting. As drought severity increased, 1,3-D treatments had better spectral reflectance values, indicating better physiological functioning under stress. Results of this research suggest that application of 1,3-D in sting nematode-infested soils may increase bermudagrass drought survival.

Free access

Wenjing Pang, John E. Luc, William T. Crow, Kevin E. Kenworthy, Robert McSorley and Robin M. Giblin-Davis

Breeding and improvement of new bermudagrass (Cynodon spp.) cultivars with superior nematode tolerance are essential because sting nematode (Belonolaimus longicaudatus Rau) is a major limitation for use of bermudagrass in the sandy coastal soils of the southeastern United States. The screening of both African (Cynodon transvaalensis) and common (C. dactylon) bermudagrass is necessary to develop triploid hybrid cultivars. Five commercial cultivars and 46 germplasm accessions of bermudagrass were tested for nematode responses in two greenhouse trials in 2009. Turfgrass was grown in sand-filled plastic conetainers and inoculated with 50 sting nematodes per conetainer. Nematode and root samples were collected 90 d after nematode inoculation. Fifteen bermudagrass accessions did not have measurable root loss from inoculation with sting nematode. Seven bermudagrass accessions, including ‘Celebration’, produced longer roots in sting nematode-infested soil than the standard ‘Tifway’. Differences in final nematode numbers were identified among the genotypes, and different relative responses were identified in variable ploidy levels and origins. This could aid a turfgrass breeding program by elucidating the genetic diversity available for breeding future bermudagrass cultivars for golf course cultivation.