Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: William J. Lord x
  • All content x
Clear All Modify Search
Free access

Wesley R. Autio, Duane W. Greene, and William J. Lord

`Summerland Red McIntosh' apple trees (Malus domestica Borkh.) on M.9/A.2, O.3, M.7 EMLA, M.26 EMLA, M.7A, OAR1, and Mark were evaluated over 10 years. Trees on M.7 EMLA and OAR1 were the largest, and trees on Mark were the smallest. Trees on M.7 EMLA produced the highest yields per tree, and those on OAR1 and Mark produced the lowest. The most yield-efficient trees were on O.3 and Mark. The least efficient trees were on OAR1. Fruit from trees on O.3, M.26 EMLA, or M.9/A.2 generally were the largest, and fruit from trees on OAR1 generally were the smallest. Red pigment development was inversely proportional to canopy size, with Mark resulting generally in the most red pigmentation and M.7 EMLA and M.7A generally resulting in the least. Methods of presenting productivity were compared. Presentation of yield per land area occupied or projected yield per planted area were biased in experiments where only some trees naturally would exceed the allotted space and, therefore, were containment pruned and where tree-to-tree competition was directly proportional to tree size. Yield efficiency was a less biased estimate. Further, in single-row planting systems with trees spaced at optimal densities, small trees must be more efficient than large trees to obtain similar yields.

Free access

Wesley R. Autio, William J. Lord, and Peter L.M. Veneman

`Marshall McIntosh' apple trees (Malus domestics Borkh.) on M.7A, M.26, M.9/MM.106, and M.9/MM.111 were planted at 10 locations in Massachusetts. After seven growing seasons, trees on M.7A were the largest and trees on M.26, M.9/MM.106, and M.9/MM.111 were similar in size on all sites. Trees on M.7A outyielded (1986-88) trees on the other rootstock at only three of the 10 sites. At three sites, trees on M.7A and, M.26 were similarly yield-efficient, but on all other sites trees on M.7A were the least efficient. Trees on M.9/MM.111 and M.9/MM.106 were similarly efllcient on all but two sites.

Free access

Charles D. Bornt, J. Brent Loy, William G. Lord, and Otho S. Wells

Research was conducted in New Hampshire during Fall 1995 and Spring 1996 to determine a planting schedule, rowcover type, application time, and plastic mulch type to be used in adapting the annual hill strawberry production system to New England. Treatments in Fall 1995 included two planting dates, three mulch types, and four rowcover modifications. Yields did not differ statistically between a 18 Aug. and 1 Sept. planting date or among plastic mulches. Typar 518 floating rowcovers significantly increased branch crowns, and early and total fruit yield compared to hay mulch applied for winter protection. Research was initiated in Fall 1996 to determine the effect of runner production on yield. Plug plants (50 vs. 24 tray) were treated with different day lengths and temperatures and planted in the field on 26 Aug. or 9 Sept. All plants were covered with Typar 518 on 4 Oct. 1996. Larger, late-planted plugs treated with cool, short days produced no runners in Fall 1996 and increased branch crowns and total yield in Spring 1997. Plants set out in Fall 1995 were evaluated for 2nd year production with or without runner pruning and four rowcover treatments in Fall 1996. Runner pruning did not significantly increase total yields, but resulted in earlier fruit harvesting in Spring 1997. Typar 518 applied 4 Oct. resulted in the greatest yield of any rowcover treatment.