Search Results
You are looking at 1 - 3 of 3 items for
- Author or Editor: William Halteman x
The relationship of soft scald incidence (SSI) with precipitation, temperature, and fruit maturity indicators in ‘Honeycrisp’ apples was examined using 7 years of data in Maine and 6 years in Ontario, Canada. Relative humidity was also examined in Maine. Soft scald incidence was highly variable from year to year ranging from 1% to 85% in Maine and from 0% to 76% in Ontario. In Ontario, SSI was negatively related to soluble solids at harvest (partial r 2 = 0.50; P = 0.0041) and negatively related to precipitation during 90 to 120 days from bloom (DFB; partial r 2 = 0.28; P = 0.0344). In Maine, SSI was most strongly related to precipitation in the 90 to 120 DFB (partial r 2 = 0.53; P = 0.0001), maximum air temperature 60 to 90 DFB (partial r 2 = 0.21; P = 0.0001), and number of hours when relative humidity was greater than 85% (partial r 2 = 0.11; P = 0.0001).
These studies were conducted to determine the most effective methods for increasing shoot elongation during the initial proliferation stage of micropropagation in two dwarfing apple, Malus ×domestica (Borkh.), rootstock cultivars. Several experiments were conducted to compare explant collection date, exposure to chilling (5 ± 1 °C) temperatures, and varying concentrations of plant growth regulators in Murashige and Skoog (MS) media. Microshoot growth of ‘Geneva 41’ (‘G.41’) was very low and unaffected by chilling duration from 0 to 8 weeks or by gibberellic acid (GA3) concentration from 0 to 1.0 mg·L−1, but was improved by an additional subculture which increased shoot length from 1 to 15 mm. In ‘Geneva 30’ (‘G.30’), shoot elongation was most affected by date, chilling explants, and by optimizing cytokinin concentration and type. Explant collection date in April increased shoot growth compared with August or November. Microshoot growth of ‘G.30’ was increased by chilling nodal explants for 4 and 6 weeks when explants were collected in August and November, but not in April. Eight weeks chilling was detrimental for explants collected in April, and generally had little or no effect with August and November. The cytokinin 6-benzylaminopurine (BA) increased shoot number to a greater extent than thidiazuron (TDZ) or zeatin (ZT), and was also more effective for increasing shoot elongation with concentrations of 0 to 2.0 mg·L−1. In ‘G.30’, GA3 increased shoot growth at the optimum concentration of BA, but not with lower concentrations. ‘G.30’ microshoots were fewer and shorter with 24-epi-brassinolide (EBR) at concentrations of 0.1 and 1.0 mg·L−1. Chemical names: N-phenyl-N’-(1,2,3-thiadiazol-5-yl)urea (TDZ), 6-(4-hydroxy-3-methylbut-2-enylamino)purine (ZT).
The influence of red and blue light wavelengths was tested to improve the initial in vitro multiplication of apple (Malus × domestica) rootstock cultivars Budagovsky 9 (B.9), Geneva 30 (G.30), and Geneva 41 (G.41). Single-node segments were established in semisolid Murashige and Skoog media and then transferred to proliferation media and cultured 40 days under white, red, or blue light irradiance. In a second experiment, G.30 was cultured under red, blue, or white light with and without gibberellic acid (GA3). The three rootstocks responded similarly under white light in terms of shoot number, length of the longest shoot, and the number of elongated shoots. Red light increased the number of shoots, length of the longest shoot, and the number of elongated shoots of B.9 and G.30 when compared with white or blue light. Red light increased the number of elongated B.9 and G.30 shoots to five per explant compared with one per explant under white light. In contrast, shoot growth of G.41 showed no difference under the three light quality treatments, and the number of elongated shoots per explant was less than one. When compared with an absence of GA3, a concentration of GA3 at 0.5 mg·L−1 promoted in vitro shoot growth of G.30 under red and blue light.