Search Results

You are looking at 1 - 10 of 27 items for

  • Author or Editor: William Fonteno x
Clear All Modify Search

The determination of air and water holding capacities of horticultural substrates has been plagued by errors in measurement. The amount of air and water held at container capacity is influenced by the substrate and container height. Container capacity can be established through specific measurement. Air space, the difference between total porosity and container capacity, is usually poorly determined because of errors in total porosity measurement. Most researchers calculate total porosity (St) from the formula: St = 1-(ρbp), where ρb is the dry bulk density and ρp is the particle density. While bulk density is usually measured, particle density is not. Many times an average ρp of 2.65 Mg·m-3 for mineral soils is used. This sometimes creates large errors in calculating total porosity because the values of ρp for horticultural substrates range from 0.35 to 2.1 Mg·m-3. Total porosity can be measured with great accuracy at 0 kPa tension on a pressure plate apparatus, but is costly in equipment and time. Using a modified method of extraction and a new apparatus, using standard aluminum soil sampling cylinders, total porosity was measured with an 85% reduction in time end no decrease in accuracy.

Free access

The theme of this review is modulation of extension growth in transplant production through restraint of watering of the seedlings. The purpose of the modulation is to produce transplants of 1) appropriate height for ease of field setting and 2) adequate stress tolerance to withstand outdoor environmental conditions. Physiological responses of the plant are discussed in relation to the degree of water deficit stress and are related to the degree of hardening or stress tolerance development in the transplants. Optimal stress tolerance or techniques for measuring same have not been fully defined in the literature. However, stress tolerance in seedlings is necessary to withstand environmental forces such as wind and sand-blasting after the seedlings are transplanted in the field. It is also imperative that the seedlings undertake a rapid and sustained rate of growth after outdoor transplanting. Water deficit stress applied to plants elicits many different physiological responses. For example, as leaf water potential begins to decrease, leaf enlargement is inhibited before photosynthesis or respiration is affected, with the result of a higher rate of dry matter accumulation per unit leaf area. The cause of the reduced leaf area may be a result of reduced K uptake by the roots with a concomitant reduction in cell expansion. Severe water deficits however, result in overstressed seedlings with stunted growth and poor establishment when transplanted into the field. In transplant production systems, appropriate levels of water deficit stress can be used as a management tool to produce seedlings conducive to the transplanting process.

Full access

Loose rockwool had a total porosity similar to peatmoss (92%, by volume) but with water retention capabilities similar to sand. Root media formulations containing loose rockwool were tested with seven plant species for plant response and nutrient uptake. The volume percent formulation, 20 rockwool : 10 peatmoss : 20 vermiculite : 45 pine bark : 5 perlite, was superior to formulations containing 10% or 30% rockwool. Plant response in this rockwool medium in bedding plant flats was superior to that in two high-performing commercial media for impatiens (Impatiens sultanii Hook), marigold (Tagetes patula L.), and petunia (Petunia hybrida Vilm) and equal to one commercial medium for tomato (Lycopersicon esculentum Mill.). However, response of chrysanthemum (Chrysanthemum × morifolium Ramat.), geranium (Pelargonium × hortorum Bailey), and poinsettia (Euphorbia pulcherrima Willd. ex Kl.) in 1.58-liter pots was inferior to both commercial media in one-half of the trials. Differential plant responses in the root media treatments did not relate directly to differences found to occur in plant nutrient composition. The high initial pH level of rockwool necessitated reduced application of limestone and increased application of calcium sulfate to offset Ca deficiency.

Free access

Abstract

Basipetal auxin transport occurred in intact and excised Dracaena marginata stem sections at an apparent velocity of about 5 mm/hr. Application of 20 µl of 0.1 mm 2,3,5-triiodobenzoic acid (TIBA) to the basal cut end of a 3-cm stem segment excised 20 cm from the apex of 1-m-tall plants reduced basipetal auxin transport by 60%. Similar application to the apical end had no effect on acropetal auxin movement. Lateral auxin movement was observed 24 hours after application of radioactive auxin to decapitated stems which had grown horizontally for at least 30 days.

Open Access

Medium CO2 and O2 partial pressures were measured at three locations [3.8 (top layer), 7.5 (middle layer), and 10.3 (bottom layer) cm below the rim] in 15-cm-tall pots containing flowering chrysanthemums [Dendranthem×grandiflorum (Ramat.) Kitamura] grown in one of three root media. Average ambient medium CO2 and O2 partial pressures were 63 Pa and 21 kPa, respectively, and were similar in the three sampled layers in root media with an average moisture content of 50% to 60% of container capacity. Within 10 minutes after a drip-irrigation application of well water containing a titratable alkalinity to pH 4.5 of 320 mg CaCO3/liter, the partial pressure of medium CO2 increased to ≤1600 Pa and medium O2 decreased to 20.5 kPa in the top and middle layers of the pot. With subirrigation, medium CO2 partial pressures increased to ≤170 Pa and medium O2 remained at 21 kPa. When reverse-osmosis purified water (titratable alkalinity to pH 4.5 of <20 mg CaCO3/liter) was used instead of well water, the large increase in medium CO2 did not occur, indicating that the bicarbonate alkalinity in the irrigation water was the source of CO2. The high medium CO2 partial pressure measured after irrigation was not persistent; within 180 minutes, it returned to levels averaging 45% higher (100 Pa) than that measured before the irrigation. Medium O2 also had returned to ambient levels 180 minutes after the irrigation.

Free access

Most commercial and university substrate testing laboratories' recommended floriculture nutritional values are based on the saturated media extract (SME) method. With the recent gain in popularity of pour-through nutritional monitoring, alternative recommended values are needed for nutrient analyses based on pour-through extracts. Pour-through nutritional values were compared to the SME values to develop calibration curves and recommended nutritional values. Euphorbia pulcherrima `Freedom Red' Willd. ex Klotzch. were grown for two consecutive growing seasons in 16.5 cm plastic pots with Fafard 4 P root substrate and fertigated with 200, 300, or 400 mg·L-1 N from a 13N-0.88P-10.8K fertilizer. Linear relationships existed and inverse calibration curves for pour-through and SME comparisons were developed for (r 2): EC (0.98), NO3 - (0.98), P (0.97 to 0.99), K (0.99), Ca (0.94 to 0.97), and Mg (0.91). In addition, recommended pour-through substrate value ranges were developed for comparison with SME values. The established calibration curves and pour-through substrate value ranges will allow substrate-testing laboratories to make nutritional recommendations based on pour-through extractions.

Free access

Wettability is a major factor in determining whether a material can be effectively and efficiently used as a component in greenhouse substrates. Poor wettability can lead to poor plant growth and development as well as water use inefficiency. This research was designed to test the wettability and hydration efficiency of both traditional and alternative components of substrates under different initial moisture contents (MCs) and wetting agent levels. Peatmoss, perlite, coconut coir, pine bark, and two differently manufactured pine tree substrate components (pine wood chips and shredded pine wood) were tested at 50% and 25% initial MC (by weight). The objective of this research was to determine the effects of initial MC and wetting agent rates on the wettability and hydration efficiency of these substrate components. Each component received four wetting agent treatments: high (348 mL·m−3), medium (232 mL·m−3), low (116 mL·m−3), and none (0 mL·m−3). Hydration efficiency was influenced by initial MC, wetting agent rate, and inherent hydrophobic properties of the materials. Wetting agents did increase the hydration efficiencies of the substrate components, although not always enough to overcome all cases of hydrophobicity.

Free access

Container production of plants use substrates that are formulated to have adequate physical properties to sustain optimal plant growth; however, these properties can change over time as a result of substrate settling and root growth of the growing plant in the container. An apparatus (rhizometer) was developed that measures the changes caused by plant roots on physical properties of substrates during crop production in containers. The design of the rhizometer included a clear core, which allowed for observing and measuring a range of root system characteristics in situ, including total root length visible along the rhizometer. Physical properties of planted and fallow rhizometers were measured, and the effect of four species on substrate physical properties was determined. There was a general decrease in substrate total porosity and air space (AS) over time with both fallow and planted rhizometers as a result of both settling of the substrate and root growth into the substrate. Container capacity did not change over time with or without roots. Plants with large root systems such as Begonia ×hybrida acut. decreased AS over time, whereas plants of Rudbeckia hirta L. with a smaller root system did not have the same effect. Measured total root length was highly correlated to the total dry root mass of Tagetes erecta L. and Zinnia marylandica D.M. Spooner, Stimart & T. Boyle plants. This may allow tracing and measuring root lengths to be another (alternative) method to measure root systems. Planted rhizometers also allowed easy access for viewing the root system non-destructively, providing the ability to observe and measure root growth.

Free access

Moisture characteristic curves (MCC) relate the water content in a substrate to the matric potential at a given tension or height. These curves are useful for comparing the water-holding characteristics of two or more soils or soilless substrates. Most techniques for developing MCC are not well suited for measuring low tensions (0 to 100 cm H2O) in coarse substrates used in container nursery production such as those composed of bark. The objectives of this research were to compare an inexpensive modified long column method with an established method for creating low-tension MCCs and then to determine the best model for describing MCCs of bark-based soilless substrates. Three substrates composed of douglas fir (Pseudotsuga menziesii) bark alone or mixed with either peatmoss or pumice were used to compare models. Both methods described differences among the three substrates, although MCC for each method differed within a substrate type. A four-parameter log-logistic function was determined to be the simplest and most explanatory model for describing MCC of bark-based substrates.

Free access

Abstract

Moisture retention data were collected for five porous materials: soil, phenolic foam, and three combinations of commonly used media components. Two mathematical functions were evaluated for their ability to describe the water content–soil moisture relationship. A cubic polynomial function with linear parameters previously used on container media was compared to a closed-form nonlinear parameter model developed to describe water conductivity in mineral soils. In most tests for precision, adequacy, accuracy, and validation, the nonlinear function was superior to the simpler power series. The nonlinear function provides an excellent tool for describing the water content for media with widely varying physical properties.

Open Access